TY - GEN A1 - Vigerske, Stefan A1 - Gleixner, Ambros T1 - SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework N2 - This paper describes the extensions that were added to the constraint integer programming framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear programs (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithm based on a linear outer-approximation, which is computed by convex over- and underestimation of nonconvex functions. An expression graph representation of nonlinear constraints allows for bound tightening, structure analysis, and reformulation. Primal heuristics are employed throughout the solving process to find feasible solutions early. We provide insights into the performance impact of individual MINLP solver components via a detailed computational study over a large and heterogeneous test set. T3 - ZIB-Report - 16-24 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59377 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Winkler, Michael T1 - FiberSCIP - A shared memory parallelization of SCIP N2 - Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated. T3 - ZIB-Report - 13-55 KW - parallel KW - branch-and-bound KW - deterministic parallelism KW - constraint integer programming KW - mixed integer programming KW - mixed integer nonlinear programming KW - SCIP KW - MIP KW - MINLP Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42595 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Vigerske, Stefan A1 - Winkler, Michael T1 - 制約整数計画ソルバ SCIP の並列化 T1 - Parallelizing the Constraint Integer Programming Solver SCIP N2 - 制約整数計画(CIP: Constraint Integer Programming)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming), 充足可能性問題(SAT: Satisfiability Problems)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP (Solving Constraint Integer Programs)は,CIPを解くソルバとして実装され,Zuse Institute Berlin (ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発されたSCIP に対する2種類の並列化拡張を紹介する. 一つは,複数計算ノード間で大規模に並列動作するParaSCIP である. もう一つは,複数コアと共有メモリを持つ1台の計算機上で(スレッド)並列で動作するFiberSCIP である. ParaSCIP は,HLRN IIスーパーコンピュータ上で, 一つのインスタンスを解くために最大7,168 コアを利用した動作実績がある.また,統計数理研究所のFujitsu PRIMERGY RX200S5上でも,最大512コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5上 では,これまでに最適解が得られていなかったMIPLIB2010のインスタンスであるdg012142に最適解を与えた. N2 - The paradigm of Constraint Integer Programming (CIP) combines modeling and solving techniques from the fields of Constraint Programming (CP), Mixed Integer Programming (MIP) and Satisfiability Problems (SAT). The paradigm allows us to address a wide range of optimization problems. SCIP is an implementation of the idea of CIP and is now continuously extended by a group of researchers centered at Zuse Institute Berlin (ZIB). This paper introduces two parallel extensions of SCIP. One is ParaSCIP, which is intended to run on a large scale distributed memory computing environment, and the other is FiberSCIP, intended to run on shared memory computing environments. ParaSCIP has successfully been run on the HLRN II supercomputer utilizing up to 7,168 cores to solve a single difficult MIP. It has also been tested on an ISM supercomputer (Fujitsu PRIMERGY RX200S5 using up to 512 cores). The previously unsolved instance dg012142 from MIPLIB2010 was solved by using the ISM supercomputer. T2 - Parallelizing the Constraint Integer Programming Solver SCIP T3 - ZIB-Report - 13-22 KW - Mixed Integer Programming KW - Constraint Integer Programming KW - Parallel Computing KW - Distributed Memory Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18130 SN - 1438-0064 ER - TY - GEN A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously. T3 - ZIB-Report - 12-41 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16531 SN - 1438-0064 ER - TY - GEN A1 - Neun, Winfried A1 - Sturm, Thomas A1 - Vigerske, Stefan T1 - Supporting Global Numerical Optimization of Rational Functions by Generic Symbolic Convexity Tests N2 - Convexity is an important property in nonlinear optimization since it allows to apply efficient local methods for finding global solutions. We propose to apply symbolic methods to prove or disprove convexity of rational functions over a polyhedral domain. Our algorithms reduce convexity questions to real quantifier elimination problems. Our methods are implemented and publicly available in the open source computer algebra system REDUCE. Our long term goal is to integrate REDUCE as a workhorse'' for symbolic computations into a numerical solver. T3 - ZIB-Report - 10-01 KW - Nonlinear Global Optimization KW - Hybrid Symbolic-Numeric Computation KW - Convex Functions KW - Real Quantifier Elimination Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11644 SN - 1438-0064 ER - TY - GEN A1 - Müller, Benjamin A1 - Kuhlmann, Renke A1 - Vigerske, Stefan T1 - On the performance of NLP solvers within global MINLP solvers N2 - Solving mixed-integer nonlinear programs (MINLPs) to global optimality efficiently requires fast solvers for continuous sub-problems. These appear in, e.g., primal heuristics, convex relaxations, and bound tightening methods. Two of the best performing algorithms for these sub-problems are Sequential Quadratic Programming (SQP) and Interior Point Methods. In this paper we study the impact of different SQP and Interior Point implementations on important MINLP solver components that solve a sequence of similar NLPs. We use the constraint integer programming framework SCIP for our computational studies. T3 - ZIB-Report - 17-35 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64504 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Held, Harald A1 - Huang, Wei A1 - Vigerske, Stefan T1 - Towards globally optimal operation of water supply networks N2 - This paper is concerned with optimal operation of pressurized water supply networks at a fixed point in time. We use a mixed-integer nonlinear programming (MINLP) model incorporating both the nonlinear physical laws and the discrete decisions such as switching pumps on and off. We demonstrate that for instances from our industry partner, these stationary models can be solved to ε-global optimality within small running times using problem-specific presolving and state-of-the-art MINLP algorithms. In our modeling, we emphasize the importance of distinguishing between what we call real and imaginary flow, i.e., taking into account that the law of Darcy-Weisbach correlates pressure difference and flow along a pipe if and only if water is available at the high pressure end of a pipe. Our modeling solution extends to the dynamic operative planning problem. T3 - ZIB-Report - 12-25 KW - MINLP, global optimization, operative planning, water supply networks Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15603 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gemander, Patrick A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 5.0 N2 - This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG. T3 - ZIB-Report - 17-61 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66297 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gleixner, Ambros A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Winkler, Michael A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 3.2 N2 - The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs. T3 - ZIB-Report - 15-60 KW - mixed-integer linear and nonlinear programming KW - MIP solver KW - MINLP solver KW - linear programming KW - LP solver KW - simplex method KW - modeling KW - parallel branch-and-bound KW - branch-cut-and-price framework KW - generic column generation KW - Steiner tree solver KW - multi-criteria optimization KW - mixed-integer semidefinite programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57675 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Anderson, Daniel A1 - Bestuzheva, Ksenia A1 - Chen, Wei-Kun A1 - Eifler, Leon A1 - Gasse, Maxime A1 - Gemander, Patrick A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Halbig, Katrin A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Le Bodic, Pierre A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Miltenberger, Matthias A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Tawfik, Christine A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 7.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 20-10 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78023 SN - 1438-0064 ER -