TY - GEN A1 - Krumke, Sven A1 - Marathe, Madhav A1 - Poensgen, Diana A1 - Ravi, Sekharipuram S. A1 - Wirth, Hans-Christoph T1 - Budgeted Maximal Graph Coverage N2 - An instance of the \emph{maximum coverage} problem is given by a set of weighted ground elements and a cost weighted family of subsets of the ground element set. The goal is to select a subfamily of total cost of at most that of a given budget maximizing the weight of the covered elements. We formulate the problem on graphs: In this situation the set of ground elements is specified by the nodes of a graph, while the family of covering sets is restricted to connected subgraphs. We show that on general graphs the problem is polynomial time solvable if restricted to sets of size at most~$2$, but becomes NP-hard if sets of size~$3$ are permitted. On trees, we prove polynomial time solvability if each node appears in a fixed number of sets. In contrast, if vertices are allowed to appear an unbounded number of times, the problem is NP-hard even on stars. We finally give polynomial time algorithms for special cases where the subgraphs form paths and the host graph is a line, a cycle or a star. T3 - ZIB-Report - 02-24 KW - budgeted maximum coverage KW - approximation algorithm KW - dynamic programming Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6918 ER - TY - GEN A1 - Konjevod, Goran A1 - Krumke, Sven A1 - Marathe, Madhav T1 - Budget Constrained Minimum Cost Connected Medians N2 - Several practical instances of network design problems require the network to satisfy multiple constraints. In this paper, we address the \emph{Budget Constrained Connected Median Problem}: We are given an undirected graph $G = (V,E)$ with two different edge-weight functions $c$ (modeling the construction or communication cost) and $d$ (modeling the service distance), and a bound~$B$ on the total service distance. The goal is to find a subtree~$T$ of $G$ with minimum $c$-cost $c(T)$ subject to the constraint that the sum of the service distances of all the remaining nodes $v \in V\setminus T$ to their closest neighbor in~$T$ does not exceed the specified budget~$B$. This problem has applications in optical network design and the efficient maintenance of distributed databases. We formulate this problem as bicriteria network design problem, and present bicriteria approximation algorithms. We also prove lower bounds on the approximability of the problem that demonstrate that our performance ratios are close to best possible T3 - ZIB-Report - 00-10 KW - NP-hardness KW - Approximation Algorithms KW - Network Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-5783 ER -