TY - GEN A1 - Zhukova, Yulia A1 - Hiepen, Christian A1 - Knaus, Petra A1 - Osterland, Marc A1 - Prohaska, Steffen A1 - Dunlop, John W. C. A1 - Fratzl, Peter A1 - Skorb, Ekaterina V. T1 - The role of titanium surface nanotopography on preosteoblast morphology, adhesion and migration N2 - Surface structuring of titanium-based implants with appropriate nanotopographies can significantly modulate their impact on the biological behavior of cells populating these implants. Implant assisted bone tissue repair and regeneration require functional adhesion and expansion of bone progenitors. The surface nanotopography of implant materials used to support bone healing and its effect on cell behavior, in particular cell adhesion, spreading, expansion, and motility, is still not clearly understood. The aim of this study is to investigate preosteoblast proliferation, adhesion, morphology, and migration on different titanium materials with similar surface chemistry, but distinct nanotopographical features. Sonochemical treatment and anodic oxidation were employed to fabricate disordered – mesoporous titania (TMS), and ordered – titania nanotubular (TNT) topographies respectively. The morphological evaluation revealed a surface dependent shape, thickness, and spreading of cells owing to different adherence behavior. Cells were polygonal-shaped and well-spread on glass and TMS, but displayed an elongated fibroblast-like morphology on TNT surfaces. The cells on glass however, were much flatter than on nanostructured surfaces. Both nanostructured surfaces impaired cell adhesion, but TMS was more favorable for cell growth due to its support of cell attachment and spreading in contrast to TNT. Quantitative wound healing assay in combination with live-cell imaging revealed that cells seeded on TMS surfaces migrated in close proximity to neighboring cells and less directed when compared to the migratory behavior on other surfaces. The results indicate distinctly different cell adhesion and migration on ordered and disordered titania nanotopographies, providing important information that could be used in optimizing titanium-based scaffold design to foster bone tissue growth and repair. T3 - ZIB-Report - 17-06 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63053 SN - 1438-0064 ER - TY - GEN A1 - Hoerth, Rebecca M. A1 - Baum, Daniel A1 - Knötel, David A1 - Prohaska, Steffen A1 - Willie, Bettina M. A1 - Duda, Georg A1 - Hege, Hans-Christian A1 - Fratzl, Peter A1 - Wagermaier, Wolfgang T1 - Registering 2D and 3D Imaging Data of Bone during Healing N2 - Purpose/Aims of the Study: Bone’s hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue’s calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes. T3 - ZIB-Report - 15-01 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53426 SN - 1438-0064 ER - TY - GEN A1 - Chaumel, Júlia A1 - Schotte, Merlind A1 - Bizzarro, Joseph J. A1 - Zaslansky, Paul A1 - Fratzl, Peter A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage N2 - In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone. T3 - ZIB-Report - 20-04 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-77087 SN - 1438-0064 ER -