TY - GEN A1 - Tjusila, Gennesaret A1 - Besancon, Mathieu A1 - Turner, Mark A1 - Koch, Thorsten T1 - How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem N2 - It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95\% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest. T3 - ZIB-Report - 23-15 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-90902 ER - TY - GEN A1 - Schiewe, Philine A1 - Goerigk, Marc A1 - Lindner, Niels T1 - Introducing TimPassLib - A library for integrated periodic timetabling and passenger routing N2 - Classic models to derive a timetable for public transport often face a chicken-and-egg situation: A good timetable should offer passengers routes with small travel times, but the route choice of passengers depends on the timetable. While models that fix passenger routes were frequently considered in the literature, integrated models that simultaneously optimize timetables and passenger routes have seen increasing attention lately. This creates a growing need for a set of instances that allows to test and compare new algorithmic developments for the integrated problem. Our paper addresses this requirement by presenting TimPassLib, a new benchmark library of instances for integrated periodic timetabling and passenger routing. T3 - ZIB-Report - 23-06 KW - periodic timetabling KW - optimization in public transport KW - data sets KW - benchmarking Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89741 SN - 1438-0064 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Chmiela, Antonia A1 - Müller, Benjamin A1 - Serrano, Felipe A1 - Vigerske, Stefan A1 - Wegscheider, Fabian T1 - Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8.0 N2 - For over ten years, the constraint integer programming framework SCIP has been extended by capabilities for the solution of convex and nonconvex mixed-integer nonlinear programs (MINLPs). With the recently published version~8.0, these capabilities have been largely reworked and extended. This paper discusses the motivations for recent changes and provides an overview of features that are particular to MINLP solving in SCIP. Further, difficulties in benchmarking global MINLP solvers are discussed and a comparison with several state-of-the-art global MINLP solvers is provided. T3 - ZIB-Report - 23-01 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89348 SN - 1438-0064 ER - TY - GEN A1 - Turner, Mark A1 - Berthold, Timo A1 - Besançon, Mathieu A1 - Koch, Thorsten T1 - Cutting Plane Selection with Analytic Centers and Multiregression N2 - Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method. T3 - ZIB-Report - 22-28 KW - cut selection KW - anlalytic center KW - mixed-integer programming Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89065 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Mexi, Gioni A1 - Salvagnin, Domenico T1 - Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump N2 - The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective. Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method’s success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm. T3 - ZIB-Report - 22-14 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88513 SN - 1438-0064 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Gleixner, Ambros A1 - Völker, Helena T1 - Strengthening SONC Relaxations with Constraints Derived from Variable Bounds N2 - Certificates of polynomial nonnegativity can be used to obtain tight dual bounds for polynomial optimization problems. We consider Sums of Nonnegative Circuit (SONC) polynomials certificates, which are well suited for sparse problems since the computational cost depends only on the number of terms in the polynomials and does not depend on the degrees of the polynomials. This work is a first step to integrating SONC-based relaxations of polynomial problems into a branch-and-bound algorithm. To this end, the SONC relaxation for constrained optimization problems is extended in order to better utilize variable bounds, since this property is key for the success of a relaxation in the context of branch-and-bound. Computational experiments show that the proposed extension is crucial for making the SONC relaxations applicable to most constrained polynomial optimization problems and for integrating the two approaches. T3 - ZIB-Report - 22-23 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88306 SN - 1438-0064 ER - TY - GEN A1 - Maristany de las Casas, Pedro A1 - Sedeno-Noda, Antonio A1 - Borndörfer, Ralf T1 - An Improved Multiobjective Shortest Path Algorithm N2 - We present a new label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem that computes the minimal complete set of efficient paths for a given instance. The size of the priority queue used in the algorithm is bounded by the number of nodes in the input graph and extracted labels are guaranteed to be efficient. These properties allow us to give a tight output-sensitive running time bound for the new algorithm that can almost be expressed in terms of the running time of Dijkstra's algorithm for the Shortest Path problem. Hence, we suggest to call the algorithm \emph{Multiobjective Dijkstra Algorithm} (MDA). The simplified label management in the MDA allows us to parallelize some subroutines. In our computational experiments, we compare the MDA and the classical label-setting MOSP algorithm by Martins', which we improved using new data structures and pruning techniques. On average, the MDA is $\times2$ to $\times9$ times faster on all used graph types. On some instances the speedup reaches an order of magnitude. T3 - ZIB-Report - 20-26 KW - Multiobjective Shortest Path Problem KW - Output-Sensitive Multiobjective Combinatorial Problems KW - Network Optimization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-79712 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Witzig, Jakob T1 - Conflict Analysis for MINLP N2 - The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality. T3 - ZIB-Report - 20-20 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78964 SN - 1438-0064 ER - TY - GEN A1 - Griewank, Andreas A1 - Streubel, Tom A1 - Tischendorf, Caren T1 - On the abs-polynomial expansion of piecewise smooth functions N2 - Tom Streubel has observed that for functions in abs-normal form, generalized Taylor expansions of arbitrary order $\bar d-1$ can be generated by algorithmic piecewise differentiation. Abs-normal form means that the real or vector valued function is defined by an evaluation procedure that involves the absolute value function $|...|$ apart from arithmetic operations and $\bar d$ times continuously differentiable univariate intrinsic functions. The additive terms in Streubel's expansion are abs-polynomial, i.e. involve neither divisions nor intrinsics. When and where no absolute values occur, Moore's recurrences can be used to propagate univariate Taylor polynomials through the evaluation procedure with a computational effort of $\mathcal O({\bar d}^2)$, provided all univariate intrinsics are defined as solutions of linear ODEs. This regularity assumption holds for all standard intrinsics, but for irregular elementaries one has to resort to Faa di Bruno's formula, which has exponential complexity in $\bar d$. As already conjectured we show that the Moore recurrences can be adapted for regular intrinsics to the abs-normal case. Finally, we observe that where the intrinsics are real analytic the expansions can be extended to infinite series that converge absolutely on spherical domains. T3 - ZIB-Report - 20-14 KW - Nonsmooth Taylor polynomial/series KW - forward mode propagation KW - abs-normal form KW - abs-linear form KW - absolute convergence KW - Moore recurrences KW - quadratic complexity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78448 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores N2 - Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 20-16 KW - Mixed Integer Programming, Parallel processing, Node merging, Racing, ParaSCIP, Ubiquity Generator Framework, MIPLIB Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78393 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Reisch, Julian T1 - Parameterized Complexity of Periodic Timetabling N2 - Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib. T3 - ZIB-Report - 20-15 KW - Parameterized complexity KW - Periodic timetabling KW - Treewidth KW - Branchwidth KW - Carvingwidth KW - Periodic Event Scheduling Problem Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78314 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - On the exact solution of prize-collecting Steiner tree problems T3 - ZIB-Report - 20-11 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78174 SN - 1438-0064 ER - TY - GEN A1 - Hendel, Gregor A1 - Anderson, Daniel A1 - Le Bodic, Pierre A1 - Pfetsch, Marc T1 - Estimating the Size of Branch-And-Bound Trees N2 - This paper investigates the estimation of the size of Branch-and-Bound (B&B) trees for solving mixed-integer programs. We first prove that the size of the B&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP. T3 - ZIB-Report - 20-02 KW - mixed integer programming KW - machine learning KW - branch and bound KW - forecasting Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78144 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Anderson, Daniel A1 - Bestuzheva, Ksenia A1 - Chen, Wei-Kun A1 - Eifler, Leon A1 - Gasse, Maxime A1 - Gemander, Patrick A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Halbig, Katrin A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Le Bodic, Pierre A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Miltenberger, Matthias A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Tawfik, Christine A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 7.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 20-10 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78023 SN - 1438-0064 ER - TY - GEN A1 - Becker, Kai-Helge A1 - Hiller, Benjamin T1 - Efficient Enumeration of Acyclic Graph Orientations with Sources or Sinks Revisited N2 - In a recent paper, Conte et al. [CGMR2017] presented an algorithm for enumerating all acyclic orientations of a graph G=(V,E) with a single source (and related orientations) with delay O(|V||E|). In this paper we revisit the problem by going back to an early paper by de Fraysseix et al. [FMR1995], who proposed an algorithm for enumerating all bipolar orientations of a graph based on a recursion formula. We first formalize de Fraysseix et al.'s algorithm for bipolar orientations and determine that its delay is also O(|V||E|). We then apply their recursion formula to the case of Conte et al.'s enumeration problem and show that this yields a more efficient enumeration algorithm with delay O(\sqrt(|V|)|E|). Finally, a way to further streamline the algorithm that leads to a particularly simple implementation is suggested. T3 - ZIB-Report - 20-05 KW - acyclic orientations KW - enumeration algorithm KW - multiple sources and sinks KW - bipolar orientations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-77684 SN - 1438-0064 ER - TY - GEN A1 - Grimm, Boris A1 - Borndörfer, Ralf A1 - Olthoff, Mats T1 - A Solution Approach to the Vehicle Routing Problem with Perishable Goods N2 - This paper focuses on a special case of vehicle routing problem where perishable goods are considered. Deliveries have to be performed until a due date date, which may vary for different products. Storing products is prohibited. Since late deliveries have a direct impact on the revenues for these products, a precise demand prediction is important. In our practical case the product demands and vehicle driving times for the product delivery are dependent on weather conditions, i.e., temperatures, wind, and precipitation. In this paper the definition and a solution approach to the Vehicle Routing Problem with Perishable Goods is presented. The approach includes a procedure how historical weather data is used to predict demands and driving times. Its run time and solution quality is evaluated on different data sets given by the MOPTA Competition 2018. T3 - ZIB-Report - 20-03 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-77020 SN - 1438-0064 ER - TY - GEN A1 - Serrano, Felipe A1 - Muñoz, Gonzalo T1 - Maximal Quadratic-Free Sets N2 - The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined as a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed. To the best of our knowledge, this work is the first to provide maximal quadratic-free sets. T3 - ZIB-Report - 19-56 KW - MINLP KW - Quadratic Optimization KW - Cutting planes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-76922 SN - 1438-0064 ER - TY - GEN A1 - Rössig, Ansgar T1 - Verification of Neural Networks T3 - ZIB-Report - 19-40 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74174 SN - 1438-0064 ER - TY - GEN A1 - Grimm, Boris A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - A Cut Separation Approach for the Rolling Stock Rotation Problem with Vehicle Maintenance T2 - 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019) N2 - For providing railway services the company’s railway rolling stock is one if not the most important ingredient. It decides about the number of passenger or cargo trips the company can offer, about the quality a passenger experiences the train ride and it is often related to the image of the company itself. Thus, it is highly desired to have the available rolling stock in the best shape possible. Moreover, in many countries, as Germany where our industrial partner DB Fernverkehr AG (DBF) is located, laws enforce regular vehicle inspections to ensure the safety of the passengers. This leads to rolling stock optimization problems with complex rules for vehicle maintenance. This problem is well studied in the literature for example see Maroti and Kroon 2005, or Cordeau et. al. 2001 for applications including vehicle maintenance. The contribution of this paper is a new algorithmic approach to solve the Rolling Stock Rotation Problem for the ICE high speed train fleet of DBF with included vehicle maintenance. It is based on a relaxation of a mixed integer linear programming model with an iterative cut generation to enforce the feasibility of a solution of the relaxation in the solution space of the original problem. The resulting mixed integer linear programming model is based on a hypergraph approach presented in Borndörfer et. al. 2015. The new approach is tested on real world instances modeling different scenarios for the ICE high speed train network in Germany and compared to the approaches of Reuther 2017 that are in operation at DB Fernverkehr AG. The approach shows a significant reduction of the run time to produce solutions with comparable or even better objective function values. T3 - ZIB-Report - 19-61 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75501 SN - 1438-0064 ER - TY - GEN A1 - Becker, Kai-Helge A1 - Hiller, Benjamin T1 - Improved optimization models for potential-driven network flow problems via ASTS orientations N2 - The class of potential-driven network flow problems provides important models for a range of infrastructure networks that lead to hard-to-solve MINLPs in real-world applications. On large-scale meshed networks the relaxations usually employed are rather weak due to cycles in the network. To address this situation, we introduce the concept of ASTS orientations, a generalization of bipolar orientations, as a combinatorial relaxation of feasible solutions of potential-driven flow problems, study their structure, and show how they can be used to strengthen existing relaxations and thus provide improved optimization models. Our computational results indicate that ASTS orientations can be used to derive much stronger bounds on the flow variables than existing bound tightening methods and to yield significant performance improvements for an existing state-of-the-art MILP model for large-scale gas networks. T3 - ZIB-Report - 19-58 KW - potential-driven network flows KW - mixed-integer nonlinear programming KW - ASTS orientations KW - bipolar orientations Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75347 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo T1 - Conflict-Free Learning for Mixed Integer Programming N2 - Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set. T3 - ZIB-Report - 19-59 KW - mixed integer programming KW - conflict analysis KW - dual proof analysis KW - no-good learning KW - solution learning Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75338 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Steffy, Daniel T1 - Linear Programming using Limited-Precision Oracles N2 - Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactly and bounds are derived on the number of elementary arithmetic operations necessary, or the cost of all arithmetic operations is considered through a bit-complexity analysis. Yet in practice, implementations typically use limited-precision arithmetic. In this paper we introduce the idea of a limited-precision LP oracle and study how such an oracle could be used within a larger framework to compute exact precision solutions to LPs. Under mild assumptions, it is shown that a polynomial number of calls to such an oracle and a polynomial number of bit operations, is sufficient to compute an exact solution to an LP. This work provides a foundation for understanding and analyzing the behavior of the methods that are currently most effective in practice for solving LPs exactly. T3 - ZIB-Report - 19-57 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75316 SN - 1438-0064 ER - TY - GEN A1 - Müller, Benjamin A1 - Muñoz, Gonzalo A1 - Gasse, Maxime A1 - Gleixner, Ambros A1 - Lodi, Andrea A1 - Serrano, Felipe T1 - On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming N2 - The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments. T3 - ZIB-Report - 19-55 KW - surrogate relaxation KW - MINLP KW - nonconvex optimization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75179 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Computational Aspects of Infeasibility Analysis in Mixed Integer Programming N2 - The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress. T3 - ZIB-Report - 19-54 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74962 SN - 1438-0064 ER - TY - GEN A1 - Chen, Ying A1 - Koch, Thorsten A1 - Xu, Xiaofei T1 - Regularized partially functional autoregressive model with application to high-resolution natural gas forecasting in Germany N2 - We propose a partially functional autoregressive model with exogenous variables (pFAR) to describe the dynamic evolution of the serially correlated functional data. It provides a unit� ed framework to model both the temporal dependence on multiple lagged functional covariates and the causal relation with ultrahigh-dimensional exogenous scalar covariates. Estimation is conducted under a two-layer sparsity assumption, where only a few groups and elements are supposed to be active, yet without knowing their number and location in advance. We establish asymptotic properties of the estimator and investigate its unite sample performance along with simulation studies. We demonstrate the application of pFAR with the high-resolution natural gas flows in Germany, where the pFAR model provides insightful interpretation as well as good out-of-sample forecast accuracy. T3 - ZIB-Report - 19-34 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74880 SN - 1438-0064 ER - TY - GEN A1 - Maher, Stephen J. A1 - Ralphs, Ted A1 - Shinano, Yuji T1 - Assessing the Effectiveness of (Parallel) Branch-and-bound Algorithms N2 - Empirical studies are fundamental in assessing the effectiveness of implementations of branch-and-bound algorithms. The complexity of such implementations makes empirical study difficult for a wide variety of reasons. Various attempts have been made to develop and codify a set of standard techniques for the assessment of optimization algorithms and their software implementations; however, most previous work has been focused on classical sequential algorithms. Since parallel computation has become increasingly mainstream, it is necessary to re-examine and modernize these practices. In this paper, we propose a framework for assessment based on the notion that resource consumption is at the heart of what we generally refer to as the “effectiveness” of an implementation. The proposed framework carefully distinguishes between an implementation’s baseline efficiency, the efficacy with which it utilizes a fixed allocation of resources, and its scalability, a measure of how the efficiency changes as resources (typically additional computing cores) are added or removed. Efficiency is typically applied to sequential implementations, whereas scalability is applied to parallel implementations. Efficiency and scalability are both important contributors in determining the overall effectiveness of a given parallel implementation, but the goal of improved efficiency is often at odds with the goal of improved scalability. Within the proposed framework, we review the challenges to effective evaluation and discuss the strengths and weaknesses of existing methods of assessment. T3 - ZIB-Report - 19-03 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74702 ER - TY - GEN A1 - Sahin, Guvenc A1 - Ahmadi, Amin A1 - Borndörfer, Ralf A1 - Schlechte, Thomas T1 - Multi-Period Line Planning with Resource Transfers N2 - Urban transportation systems are subject to a high level of variation and fluctuation in demand over the day. When this variation and fluctuation are observed in both time and space, it is crucial to develop line plans that are responsive to demand. A multi-period line planning approach that considers a changing demand during the planning horizon is proposed. If such systems are also subject to limitations of resources, a dynamic transfer of resources from one line to another throughout the planning horizon should also be considered. A mathematical modelling framework is developed to solve the line planning problem with transfer of resources during a finite length planning horizon of multiple periods. We analyze whether or not multi-period solutions outperform single period solutions in terms of feasibility and relevant costs. The importance of demand variation on multi-period solutions is investigated. We evaluate the impact of resource transfer constraints on the effectiveness of solutions. We also study the effect of line type designs and question the choice of period lengths along with the problem parameters that are significant for and sensitive to the optimality of solutions. T3 - ZIB-Report - 19-51 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74662 SN - 1438-0064 ER - TY - GEN A1 - Gotzes, Uwe A1 - Hoppmann, Kai T1 - Bounds for the final ranks during a round robin tournament T2 - Operational Research - An International Journal (ORIJ) N2 - This article answers two kinds of questions regarding the Bundesliga which is Germany's primary football (soccer) competition having the highest average stadium attendance worldwide. First "At any point of the season, what final rank will a certain team definitely reach?" and second "At any point of the season, what final rank can a certain team at most reach?". Although we focus especially on the Bundesliga, the models that we use to answer the two questions can easily be adopted to league systems that are similar to that of the Bundesliga. T3 - ZIB-Report - 19-50 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74638 ER - TY - GEN A1 - Breugem, Thomas A1 - Borndörfer, Ralf A1 - Schlechte, Thomas A1 - Schulz, Christof T1 - A Three-Phase Heuristic for Cyclic Crew Rostering with Fairness Requirements N2 - In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Requirements (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed for groups of employees, considering multiple, a priori determined, fairness levels. The attractiveness follows from the structure of the rosters (e.g., sufficient rest times and variation in work), whereas fairness is based on the work allocation among the different roster groups. We propose a three-phase heuristic for the CCRP-FR, which combines the strength of column generation techniques with a large-scale neighborhood search algorithm. The design of the heuristic assures that good solutions for all fairness levels are obtained quickly, and can still be further improved if additional running time is available. We evaluate the performance of the algorithm using real-world data from Netherlands Railways, and show that the heuristic finds close to optimal solutions for many of the considered instances. In particular, we show that the heuristic is able to quickly find major improvements upon the current sequential practice: For most instances, the heuristic is able to increase the attractiveness by at least 20% in just a few minutes. T3 - ZIB-Report - 19-43 KW - Crew Planning KW - Column Generation KW - Variable-Depth Neighborhood Search Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74297 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Hobbie, Hannes A1 - Schönheit, David A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Möst, Dominik T1 - A massively parallel interior-point solver for linear energy system models with block structure N2 - Linear energy system models are often a crucial component of system design and operations, as well as energy policy consulting. Such models can lead to large-scale linear programs, which can be intractable even for state-of-the-art commercial solvers|already the available memory on a desktop machine might not be sufficient. Against this backdrop, this article introduces an interior-point solver that exploits common structures of linear energy system models to efficiently run in parallel on distributed memory systems. The solver is designed for linear programs with doubly bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. Special effort has been put into handling large numbers of linking constraints and variables as commonly observed in energy system models. In order to handle this strong linkage, a distributed preconditioning of the Schur complement is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the existing parallel interior-point solver PIPS-IPM. We evaluate the computational performance on energy system models with up to 700 million non-zero entries in the constraint matrix, and with more than 200 million columns and 250 million rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market clearing. It has been widely applied in the literature on energy system analyses during the recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models. T3 - ZIB-Report - 19-41 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74321 SN - 1438-0064 N1 - In the meantime, this report got published as a journal article: https://opus4.kobv.de/opus4-zib/frontdoor/index/index/searchtype/authorsearch/author/Hannes+Hobbie/docId/8191/start/1/rows/10 Please use this journal reference when citing this work. ER - TY - GEN A1 - Gleixner, Ambros A1 - Kempke, Nils-Christian A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Uslu, Svenja T1 - First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method N2 - In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix. T3 - ZIB-Report - 19-39 KW - block structure KW - energy system models KW - interior-point method KW - high performance computing KW - linear programming KW - parallelization KW - presolving KW - preprocessing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74084 SN - 1438-0064 ER - TY - GEN A1 - Serrano, Felipe T1 - Visible points, the separation problem, and applications to MINLP N2 - In this paper we introduce a technique to produce tighter cutting planes for mixed-integer non-linear programs. Usually, a cutting plane is generated to cut off a specific infeasible point. The underlying idea is to use the infeasible point to restrict the feasible region in order to obtain a tighter domain. To ensure validity, we require that every valid cut separating the infeasible point from the restricted feasible region is still valid for the original feasible region. We translate this requirement in terms of the separation problem and the reverse polar. In particular, if the reverse polar of the restricted feasible region is the same as the reverse polar of the feasible region, then any cut valid for the restricted feasible region that \emph{separates} the infeasible point, is valid for the feasible region. We show that the reverse polar of the \emph{visible points} of the feasible region from the infeasible point coincides with the reverse polar of the feasible region. In the special where the feasible region is described by a single non-convex constraint intersected with a convex set we provide a characterization of the visible points. Furthermore, when the non-convex constraint is quadratic the characterization is particularly simple. We also provide an extended formulation for a relaxation of the visible points when the non-convex constraint is a general polynomial. Finally, we give some conditions under which for a given set there is an inclusion-wise smallest set, in some predefined family of sets, whose reverse polars coincide. T3 - ZIB-Report - 19-38 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74016 SN - 1438-0064 ER - TY - GEN A1 - Grimm, Boris A1 - Borndörfer, Ralf A1 - Schlechte, Thomas T1 - Re-optimizing ICE Rotations after a Tunnel Breakdown near Rastatt N2 - Planning rolling stock movements in industrial passenger railway applications isa long-term process based on timetables which are also often valid for long periods of time. For these timetables and rotation plans, i.e., plans of railway vehicle movements are constructed as templates for these periods. During operation the rotation plans are affected by all kinds of unplanned events. An unusal example for that is the collapse of a tunnel ceiling near Rastatt in southern Germany due to construction works related to the renewal of the central station in Stuttgart. As a result the main railway connection between Stuttgart and Frankfurt am Main, located on top of the tunnel, had to be closed from August 12th to October 2nd 2017. This had a major impact on the railway network in southern Germany. Hence, all rotation plans and train schedules for both passenger and cargo traffic had to be revised. In this paper we focus on a case study for this situation and compute new rotation plans via mixed integer programming for the ICE high speed fleet of DB Fernverkehr AG one of the largest passenger railway companies in Europe. In our approach we take care of some side constraints to ensure a smooth continuation of the rotation plans after the disruption has ended. T3 - ZIB-Report - 19-02 KW - case study KW - re-optimization KW - railway rolling stock optimization KW - mixed integer programming Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73976 SN - 1438-0064 ER - TY - GEN A1 - Löbel, Fabian A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing N2 - The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances. T3 - ZIB-Report - 19-36 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Integrated Passenger Routing KW - Shortest Routes in Public Transport Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73868 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - New Perspectives on PESP: T-Partitions and Separators N2 - In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables. We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either. The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible. We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time. T3 - ZIB-Report - 19-35 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Graph Partitioning KW - Graph Separators KW - Balanced Cuts Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73853 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Inken A1 - Petkovic, Milena T1 - Prediction of Intermitted Flows in Large Gas Networks T3 - ZIB-Report - 19-29 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73717 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Elijazyfer, Ziena A1 - Schwartz, Stephan T1 - Approximating Balanced Graph Partitions N2 - We consider the problem of partitioning a weighted graph into k connected components of similar weight. In particular, we consider the two classical objectives to maximize the lightest part or to minimize the heaviest part. For a partitioning of the vertex set and for both objectives, we give the first known approximation results on general graphs. Specifically, we give a $\Delta$-approximation where $\Delta$ is the maximum degree of an arbitrary spanning tree of the given graph. Concerning the edge partition case, we even obtain a 2-approximation for the min-max and the max-min problem, by using the claw-freeness of line graphs. T3 - ZIB-Report - 19-25 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73675 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann, Kai A1 - Hennings, Felix A1 - Lenz, Ralf A1 - Gotzes, Uwe A1 - Heinecke, Nina A1 - Spreckelsen, Klaus A1 - Koch, Thorsten T1 - Optimal Operation of Transient Gas Transport Networks T3 - ZIB-Report - 19-23 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73639 SN - 1438-0064 ER - TY - GEN A1 - Hennings, Felix A1 - Anderson, Lovis A1 - Hoppmann, Kai A1 - Turner, Mark A1 - Koch, Thorsten T1 - Controlling transient gas flow in real-world pipeline intersection areas N2 - Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach. T3 - ZIB-Report - 19-24 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73645 SN - 1438-0064 ER - TY - GEN A1 - Hoppmann, Kai T1 - On the Complexity of the Maximum Minimum Cost Flow Problem N2 - Consider a flow network, i.e., a directed graph where each arc has a nonnegative capacity and an associated length, together with nonempty supply-intervals for the sources and nonempty demand-intervals for the sinks. The goal of the Maximum Minimum Cost Flow Problem (MMCF) is to find fixed supply and demand values within these intervals, such that the optimal objective value of the induced Minimum Cost Flow Problem (MCF) is maximized. In this paper, we show that MMCF is APX-hard and remains NP-hard in the uncapacitated case. T3 - ZIB-Report - 19-19 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73359 SN - 1438-0064 ER - TY - GEN A1 - Serrano, Felipe A1 - Schwarz, Robert A1 - Gleixner, Ambros T1 - On the Relation between the Extended Supporting Hyperplane Algorithm and Kelley’s Cutting Plane Algorithm N2 - Recently, Kronqvist et al. (2016) rediscovered the supporting hyperplane algorithm of Veinott (1967) and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley's cutting plane algorithm applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by general, not necessarily convex, differentiable functions that satisfy a mild condition. T3 - ZIB-Report - 19-18 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73253 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gamrath, Gerald A1 - Salvagnin, Domenico T1 - Exploiting Dual Degeneracy in Branching N2 - Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 % on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 % on average. T3 - ZIB-Report - 19-17 KW - mixed integer programming KW - branching rule KW - search strategy KW - dual degeneracy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73028 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Rehfeldt, Daniel A1 - Galley, Tristan T1 - An Easy Way to Build Parallel State-of-the-art Combinatorial Optimization Problem Solvers: A Computational Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-libraries N2 - Branch-and-bound (B&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks.The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries---by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature. T3 - ZIB-Report - 19-14 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72804 SN - 1438-0064 ER - TY - GEN A1 - Müller, Benjamin A1 - Serrano, Felipe A1 - Gleixner, Ambros T1 - Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms N2 - One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over a strict, non-rectangular subset of the box. In order to exploit this in practice, we propose to compute valid linear inequalities for the projection of the feasible region onto the x-y-space by solving a sequence of linear programs akin to optimization-based bound tightening. These valid inequalities allow us to employ results from the literature to strengthen the classical McCormick relaxation. As a consequence, we obtain a stronger convexification procedure that exploits problem structure and can benefit from supplementary information obtained during the branch-and bound algorithm such as an objective cutoff. We complement this by a new bound tightening procedure that efficiently computes the best possible bounds for x, y, and xy over the available projections. Our computational evaluation using the academic solver SCIP exhibit that the proposed methods are applicable to a large portion of the public test library MINLPLib and help to improve performance significantly. T3 - ZIB-Report - 19-15 KW - mixed-integer quadratically constrained programs KW - nonconvex KW - global optimization KW - separation KW - propagation KW - projection KW - bilinear terms Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72759 SN - 1438-0064 ER - TY - GEN A1 - Anderson, Daniel A1 - Hendel, Gregor A1 - Le Bodic, Pierre A1 - Viernickel, Jan Merlin T1 - Clairvoyant Restarts in Branch-and-Bound Search Using Online Tree-Size Estimation N2 - We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart the search based on the current estimate of the number of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant. Our clairvoyant restart strategy outperforms a state-of-the-art solver on a large set of publicly available MIP benchmark instances. It is implemented in the MIP solver SCIP and will be available in future releases. T3 - ZIB-Report - 19-11 KW - Mixed-Integer Programming solvers KW - Restart KW - Progress measures KW - tree-size estimates Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72653 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Gleixner, Ambros T1 - Conflict-Driven Heuristics for Mixed Integer Programming N2 - Two essential ingredients of modern mixed-integer programming (MIP) solvers are diving heuristics that simulate a partial depth-first search in a branch-and-bound search tree and conflict analysis of infeasible subproblems to learn valid constraints. So far, these techniques have mostly been studied independently: primal heuristics under the aspect of finding high-quality feasible solutions early during the solving process and conflict analysis for fathoming nodes of the search tree and improving the dual bound. Here, we combine both concepts in two different ways. First, we develop a diving heuristic that targets the generation of valid conflict constraints from the Farkas dual. We show that in the primal this is equivalent to the optimistic strategy of diving towards the best bound with respect to the objective function. Secondly, we use information derived from conflict analysis to enhance the search of a diving heuristic akin to classical coefficient diving. The computational performance of both methods is evaluated using an implementation in the source-open MIP solver SCIP. Experiments are carried out on publicly available test sets including Miplib 2010 and Cor@l. T3 - ZIB-Report - 19-08 KW - mixed integer programming; primal heuristics; conflict analysis; branch-and-bound Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72204 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Lindner, Niels A1 - Roth, Sarah T1 - A Concurrent Approach to the Periodic Event Scheduling Problem N2 - We introduce a concurrent solver for the periodic event scheduling problem (PESP). It combines mixed integer programming techniques, the modulo network simplex method, satisfiability approaches, and a new heuristic based on maximum cuts. Running these components in parallel speeds up the overall solution process. This enables us to significantly improve the current upper and lower bounds for all benchmark instances of the library PESPlib. T3 - ZIB-Report - 19-07 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Mixed Integer Programming Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71907 SN - 1438-0064 ER - TY - GEN A1 - Grimm, Boris A1 - Borndörfer, Ralf A1 - Schulz, Christof A1 - Weider, Steffen T1 - The Rolling Stock Rotation Planning Problem under Revenue Considerations N2 - In many railway undertakings a railway timetable is offered that is valid for a longer period of time. At DB Fernverkehr AG, one of our industrial partners, this results in a summer and a winter timetable. For both of these timetables rotation plans, i.e., a detailed plan of railway vehicle movements is constructed as a template for this period. Sometimes there are be periods where you know for sure that vehicle capacities are not sufficient to cover all trips of the timetable or to transport all passenger of the trips. Reasons for that could be a heavy increase of passenger flow, a heavy decrease of vehicle availability, impacts from nature, or even strikes of some employees. In such events the rolling stock rotations have to be adapted. Optimization methods are particularly valuable in such situations in order to maintain a best possible level of service or to maximize the expected revenue using the resources that are still available. In most cases found in the literature, a rescheduling based on a timetable update is done, followed by the construction of new rotations that reward the recovery of parts of the obsolete rotations. We consider a different, novel, and more integrated approach. The idea is to guide the cancellation of the trips or reconfiguration of the vehicle composition used to operate a trip of the timetable by the rotation planning process, which is based on the mixed integer programming approach presented in Reuther (2017). The goal is to minimize the operating costs while cancelling or operating a trip with an insufficient vehicle configuration in sense of passenger capacities inflicts opportunity costs and loss of revenue, which are based on an estimation of the expected number of passengers. The performance of the algorithms presented in two case studies, including real world scenarios from DB Fernverkehr AG and a railway operator in North America. T3 - ZIB-Report - 19-01 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71339 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Stuckey, Peter A1 - Witzig, Jakob T1 - Local Rapid Learning for Integer Programs N2 - Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems. T3 - ZIB-Report - 18-56 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71190 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming N2 - Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part. T3 - ZIB-Report - 18-57 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71170 SN - 1438-0064 ER -