TY - GEN A1 - Hammerschmidt, Martin A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Adaptive sampling strategies for efficient parameter scans in nano-photonic device simulations N2 - Rigorous optical simulations are an important tool in optimizing scattering properties of nano-photonic devices and are used, for example, in solar cell optimization. The finite element method (FEM) yields rigorous, time-harmonic, high accuracy solutions of the full 3D vectorial Maxwell's equations [1] and furthermore allows for great flexibility and accuracy in the geometrical modeling of these often complex shaped 3D nano-structures. A major drawback of frequency domain methods is the limitation of single frequency evaluations. For example the accurate computation of the short circuit current density of an amorphous silicon / micro-crystalline multi-junction thin film solar cell may require the solution of Maxwell's equations for over a hundred different wavelengths if an equidistant sampling strategy is employed. Also in optical metrology, wavelength scans are frequently used to reconstruct unknown geometrical and material properties of optical systems numerically from measured scatterometric data. In our contribution we present several adaptive numerical integration and sampling routines and study their efficiency in the context of the determination of generation rate profiles of solar cells. We show that these strategies lead to a reduction in the computational effort without loss of accuracy. We discuss the employment of tangential information in a Hermite interpolation scheme to achieve similar accuracy on coarser grids. We explore the usability of these strategies for scatterometry and solar cell simulations. T3 - ZIB-Report - 14-20 KW - finite element method KW - optical simulations KW - adaptive sampling KW - optical metrology KW - parameter scans KW - solar cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50395 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Lockau, Daniel A1 - Zschiedrich, Lin A1 - Schmidt, Frank T1 - Optical modelling of incoherent substrate light-trapping in silicon thin film multi-junction solar cells with finite elements and domain decomposition N2 - In many experimentally realized applications, e.g. photonic crystals, solar cells and light-emitting diodes, nano-photonic systems are coupled to a thick substrate layer, which in certain cases has to be included as a part of the optical system. The finite element method (FEM) yields rigorous, high accuracy solutions of full 3D vectorial Maxwell's equations [1] and allows for great flexibility and accuracy in the geometrical modelling. Time-harmonic FEM solvers have been combined with Fourier methods in domain decomposition algorithms to compute coherent solutions of these coupled system. [2,3] The basic idea of a domain decomposition approach lies in a decomposition of the domain into smaller subdomains, separate calculations of the solutions and coupling of these solutions on adjacent subdomains. In experiments light sources are often not perfectly monochromatic and hence a comparision to simulation results might only be justified if the simulation results, which include interference patterns in the substrate, are spectrally averaged. In this contribution we present a scattering matrix domain decomposition algorithm for Maxwell's equations based on FEM. We study its convergence and advantages in the context of optical simulations of silicon thin film multi-junction solar cells. This allows for substrate light-trapping to be included in optical simulations and leads to a more realistic estimation of light path enhancement factors in thin-film devices near the band edge. T3 - ZIB-Report - 14-21 KW - finite element method KW - rigorous optical modeling KW - domain decomposition KW - multi-junction solar cells KW - thin-film silicon solar cells KW - incoherent layers KW - incoherent light-trapping Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50410 SN - 1438-0064 ER - TY - THES A1 - Gutsche, Philipp T1 - Convergence Study of the Fourier Modal Method for Nano-optical Scattering Problems in Comparison with the Finite Element Method N2 - Nano-optical scattering problems play an important role in our modern, technologically driven society. Computers, smartphones and all kinds of electronic devices are manufactured by the semiconductor industry which relies on production using photomasks as well as optical process control. The digital world, e.g. the world wide web, is based on optical interconnects and so-called quantum computers based on optics are supposed to be next generation computers. Moreover, global economic progress demands new and sustainable energy resources and one option is to make use of the power stored in optical radiation from the sun. Additionally, understanding fundamental physics such as the optical properties of asymmetric, or chiral, structures could promote future innovations in engineering. In order to understand and manipulate these kinds of processes, physics provides a well established model: the so-called Maxwell’s equations. Stated by James Clerk Maxwell in 1862, this description of the interaction of light and matter still provides a profound basis for the analysis of electromagnetic phenomena. However, real world problems cannot be calculated using simple mathematics. Rather, computer simulations are needed to obtain solutions of the physical model. Finding suitable methods to solve these problems opens up a wide variety of possibilities. On the one hand, there are methods which require long computing times. On the other hand, some algorithms depend on high memory usage. That is why the field of numerics deals with the question which method is optimally suited for specific problems. The aim of this work is to investigate the applicability of the so-called Fourier Modal Method (FMM) to nano-optical scattering problems in general. Since simple analytical solutions are non-existent for most recent physical problems, we use the Finite Element Method (FEM) to double-check performance of the FMM. Mathematics provide reliable procedures to control the errors of numerics using the FEM. Yet up to now it has not been possible to rigorously classify the quality of the Fourier Modal Method’s results. It is not fully understood whether the process of investing more and more computing resources yields more accurate results. So, we have to ask ourselves: does the numerical method invariably converge? In spite of this uncertainty when using the FMM, it is a well established method dating back to the 1980s. This numerical method has recently been used to optimize performance of solar cells [19] as well as to improve the optical properties of so-called single-photon sources [41] which are essential for quantum cryptography. The latter is a promising candidate to increase digital security and revolutionise cryptography techniques. Furthermore, with the help of the Fourier Modal Method an important issue in optics has been partly resolved: angular filtering of light was made possible by using a mirror which becomes transparent at a certain viewing angle [77]. In addition, an improved numerical technique to design so-called Photonic Crystal waveguides based on the FMM was developed recently [15]. Photonic Crystals are used in the fields of optical bio-sensing and for the construction of novel semiconductor devices. Moreover, approaches to link the FMM and the FEM try to combine advantages of both methods to obtain fast and accurate results [81]. These ideas are closely linked to the well-known concept of Domain Decomposition within the FEM [88]. Here, one possibility to couple domains is to use the scattering matrix formalism as it is done in the FMM. In the scope of this convergence study, we state Maxwell’s equations, particularly for periodic geometries. We describe two physical phenomena of nano-optics, namely chirality and opto-electrical coupling, and define the errors of our simulations. Afterwards, the two investigated methods are analysed with respect to their general properties and a way to unify modelling physics when using both algorithms is presented. With the help of various numerical experiments, we explore convergence characteristics of the FMM and draw conclusions about the ability of this approach to provide accurate results and, consequently, its potential for research on technological innovations. KW - Nano-optics KW - Fourier Modal Method (FMM) KW - Rigorous Coupled Wave Analysis (RCWA) KW - Finite Element Method (FEM) Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56084 ER -