TY - CHAP A1 - Riedmüller, Stephanie A1 - Buchholz, Annika A1 - Zittel, Janina T1 - Enhancing Multi-Energy Modeling: The Role of Mixed-Integer Optimization Decisions T2 - The 38th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems – ECOS 2025 N2 - The goal to decarbonize the energy sector has led to increased research in modeling and optimizing multi-energy systems. One of the most promising and popular techniques for modeling and solving (multi-)energy optimization problems is (multi-objective) mixed-integer programming, valued for its ability to represent the complexities of integrated energy systems. While the literature often focuses on deriving mathematical formulations and parameter settings, less attention is given to critical post-formulation decisions. Modeling multi-energy systems as mixed-integer linear optimization programs demands decisions across multiple degrees of freedom. Key steps include reducing a real-world multi energy network into an abstract topology, defining variables, formulating the relevant (in-)equalities to represent technical requirements, setting (multiple) objectives, and integrating these elements into a mixed-integer program (MIP). However, with these elements fixed, the specific transformation of the abstract topology into a graph structure and the construction of the MIP remain non-uniquely. These choices can significantly impact user-friendliness, problem size, and computational efficiency, thus affecting the feasibility and efficiency of modeling efforts. In this work, we identify and analyze the additional degrees of freedom and describe two distinct approaches to address them. The approaches are compared regarding mathematical equivalence, suitability for solution algorithms, and clarity of the underlying topology. A case study on a realistic subarea of Berlin’s district heating network involving tri-objective optimization for a unit commitment problem demonstrates the practical significance of these decisions. By highlighting these critical yet often overlooked aspects, our work equips energy system modelers with insights to improve computational efficiency, scalability, and interpretability in their optimization efforts, ultimately enhancing the practicality and effectiveness of multi-energy system models. Y1 - 2025 ER - TY - CHAP A1 - Zittel, Janina A1 - Clarner, Jan-Patrick A1 - Tawfik, Christine A1 - Dykes, Maxwell A1 - Rivetta, Fabian A1 - Riedmüller, Stephanie T1 - A multi-objective optimization strategy for district heating production portfolio planning T2 - 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024) N2 - The imperative to decarbonize energy systems has intensified the need for efficient transformations within the heating sector, with a particular focus on district heating networks. This study addresses this challenge by proposing a comprehensive optimization approach evaluated on the district heating network of the Märkisches Viertel of Berlin. Our objective is to simultaneously optimize heat production with three targets: minimizing costs, minimizing CO2-emissions, and maximizing heat generation from Combined Heat and Power (CHP) plants for enhanced efficiency. To tackle this optimization problem, we employed a Mixed-Integer Linear Program (MILP) that encompasses the conversion of various fuels into heat and power, integration with relevant markets, and considerations for technical constraints on power plant operation. These constraints include startup and minimum downtime, activation costs, and storage limits. The ultimate goal is to delineate the Pareto front, representing the optimal trade-offs between the three targets. We evaluate variants of the 𝜖-constraint algorithm for their effectiveness in coordinating these objectives, with a simultaneous focus on the quality of the estimated Pareto front and computational efficiency. One algorithm explores solutions on an evenly spaced grid in the objective space, while another dynamically adjusts the grid based on identified solutions. Initial findings highlight the strengths and limitations of each algorithm, providing guidance on algorithm selection depending on desired outcomes and computational constraints. Our study emphasizes that the optimal choice of algorithm hinges on the density and distribution of solutions in the feasible space. Whether solutions are clustered or evenly distributed significantly influences algorithm performance. These insights contribute to a nuanced understanding of algorithm selection for multi-objective multi-energy system optimization, offering valuable guidance for future research and practical applications for planning sustainable district heating networks. Y1 - 2024 U6 - https://doi.org/10.52202/077185-0066 SP - 764 EP - 775 ER - TY - CHAP A1 - Riedmüller, Stephanie A1 - Rivetta, Fabian A1 - Zittel, Janina T1 - Long-Term Multi-Objective Optimization for Integrated Unit Commitment and Investment Planning for District Heating Networks BT - Selected Papers of the International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), Munich, Germany, September 3-6, 2024 T2 - Operations Research Proceedings 2024 N2 - The need to decarbonize the energy system has intensified the focus on district heating networks in urban and suburban areas. Therefore, exploring transformation pathways with reasonable trade-offs between economic viability and environmental goals became necessary. We introduce a network-flow-based model class integrating unit commitment and long-term investment planning for multi-energy systems. While the integration of unit commitment and investment planning has been applied to multi-energy systems, a formal introduction and suitability for the application of long-term portfolio planning of an energy provider on an urban scale has yet to be met. Based on mixed integer linear programming, the model bridges the gap between overly detailed industrial modeling tools not designed for computational efficiency at scale and rather abstract academic models. The formulation is tested on Berlin’s district heating network. Hence, the challenge lies in a large number of variables and constraints and the coupling of time steps, for example, through investment decisions. A case study explores different solutions on the Pareto front defined by optimal trade-offs between minimizing costs and CO2 emissions through a lexicographic optimization approach. The resulting solution catalog can provide decision-makers valuable insights into feasible transformation pathways, highlighting distinctions between robust and target-dependent investments. Y1 - 2025 U6 - https://doi.org/10.1007/978-3-031-92575-7_33 SP - 235 EP - 241 PB - Springer Cham ER - TY - CHAP A1 - Riedmüller, Stephanie A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Warm-starting Strategies in Scalarization Methods for Multi-Objective Optimization T2 - Operations Research Proceedings 2025 N2 - We explore how warm-starting strategies can be integrated into scalarization-based approaches for multi-objective optimization in (mixed) integer linear programming. Scalarization methods remain widely used classical techniques to compute Pareto-optimal solutions in applied settings. They are favored due to their algorithmic simplicity and broad applicability across continuous and integer programs with an arbitrary number of objectives. While warm-starting has been applied in this context before, a systematic methodology and analysis remain lacking. We address this gap by providing a theoretical characterization of warm-starting within scalarization methods, focusing on the sequencing of subproblems. However, optimizing the order of subproblems to maximize warm-start efficiency may conflict with alternative criteria, such as early identification of infeasible regions. We quantify these trade-offs through an extensive computational study. Y1 - 2025 ER -