TY - GEN A1 - Ebert, Patricia A1 - Masing, Berenike A1 - Lindner, Niels A1 - Gleixner, Ambros T1 - Sorting Criteria for Line-based Periodic Timetabling Heuristics N2 - It is well-known that optimal solutions are notoriously hard to find for the Periodic Event Scheduling Problem (PESP), which is the standard mathematical formulation to optimize periodic timetables in public transport. We consider a class of incremental heuristics that have been demonstrated to be effective by Lindner and Liebchen (2023), however, for only one fixed sorting strategy of lines along which a solution is constructed. Thus, in this paper, we examine a variety of sortings based on the number, weight, weighted span, and lower bound of arcs, and test for each setting various combinations of the driving, dwelling, and transfer arcs of lines. Additionally, we assess the impact on the incremental extension of the event-activity network by minimizing resp. maximizing a connectivity measure between subsets of lines. We compare our 27 sortings on the railway instances of the benchmarking library PESPlib within the ConcurrentPESP solver framework. We are able to find five new incumbent solutions, resulting in improvements of up to 2%. T3 - ZIB-Report - 24-07 KW - Public Transport KW - Timetabling KW - Periodic Event Scheduling Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-97826 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Incremental Heuristics for Periodic Timetabling N2 - We present incremental heuristics for the Periodic Event Scheduling Problem (PESP), the standard mathematical tool to optimize periodic timetables in public transport. The core of our method is to solve successively larger subinstances making use of previously found solutions. Introducing the technical notion of free stratifications, we formulate a general scheme for incremental heuristics for PESP. More practically, we use line and station information to create heuristics that add lines or stations one by one, and we evaluate these heuristics on instances of the benchmarking library PESPlib. This approach is indeed viable, and leads to new incumbent solutions for six PESPlib instances. T3 - ZIB-Report - 23-22 KW - Timetabling KW - Mixed-Integer Programming KW - Public Transport Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-92309 SN - 1438-0064 ER - TY - GEN A1 - Bortoletto, Enrico A1 - Lindner, Niels T1 - Scaling and Rounding Periodic Event Scheduling Instances to Different Period Times N2 - The Periodic Event Scheduling Problem (PESP) is a notoriously hard combinatorial optimization problem, essential for the design of periodic timetables in public transportation. The coefficients of the integer variables in the standard mixed integer linear programming formulations of PESP are the period time, e.g., 60 for a horizon of one hour with a resolution of one minute. In many application scenarios, lines with different frequencies have to be scheduled, leading to period times with many divisors. It then seems natural to consider derived instances, where the period time is a divisor of the original one, thereby smaller, and bounds are scaled and rounded accordingly. To this end, we identify two rounding schemes: wide and tight. We then discuss the approximation performance of both strategies, in theory and practice. T3 - ZIB-Report - 23-23 KW - Timetabling KW - Mixed-Integer Programming KW - Public Transport Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-92315 SN - 1438-0064 ER -