TY - JOUR A1 - Masing, Berenike A1 - Lindner, Niels A1 - Bortoletto, Enrico T1 - Computing All Shortest Passenger Routes with a Tropical Dijkstra Algorithm JF - EURO Journal on Transportation and Logistics N2 - Given a public transportation network, which and how many passenger routes can potentially be shortest paths, when all possible timetables are taken into account? This question leads to shortest path problems on graphs with interval costs on their arcs and is closely linked to multi-objective optimization. We introduce a Dijkstra algorithm based on polynomials over the tropical semiring that computes complete or minimal sets of efficient paths. We demonstrate that this approach is computationally feasible by employing it on the public transport network of the city of Wuppertal and instances of the benchmarking set TimPassLib, and we evaluate the resulting sets of passenger routes. Y1 - 2025 U6 - https://doi.org/10.1016/j.ejtl.2025.100163 VL - 14 ER - TY - JOUR A1 - Bortoletto, Enrico A1 - Lindner, Niels A1 - Masing, Berenike T1 - The Tropical and Zonotopal Geometry of Periodic Timetables JF - Discrete & Computational Geometry N2 - The Periodic Event Scheduling Problem (PESP) is the standard mathematical tool for optimizing periodic timetables in public transport. A solution to a PESP instance consists of three parts: a periodic timetable, a periodic tension, and integer offset values. While the space of periodic tensions has received much attention in the past, we explore geometric properties of the other two components. The general aim of this paper is to establish novel connections between periodic timetabling and discrete geometry. Firstly, we study the space of feasible periodic timetables as a disjoint union of polytropes. These are polytopes that are convex both classically and in the sense of tropical geometry. We then study this decomposition and use it to outline a new heuristic for PESP, based on neighbourhood relations of the polytropes. Secondly, we recognize that the space of fractional cycle offsets is in fact a zonotope, and then study its zonotopal tilings. These are related to the hyperrectangle of fractional periodic tensions, as well as the polytropes of the periodic timetable space, and we detail their interplay. To conclude, we also use this new understanding to give tight lower bounds on the minimum width of an integral cycle basis. Y1 - 2025 U6 - https://doi.org/10.1007/s00454-024-00686-2 VL - 73 SP - 719 EP - 763 ER - TY - GEN A1 - Lindner, Niels A1 - Masing, Berenike T1 - SAT-Generated Initial Solutions for Integrated Line Planning and Turn-Sensitive Periodic Timetabling with Track Choice N2 - Periodic timetabling is a challenging planning task in public transport. As safety requirements are crucial, track allocation is indispensable for validating the practical feasibility of a railway timetable. For busy stations with limited capacities, this requires a detailed planning of turnarounds. It is therefore desirable to integrate timetabling not only with track allocation, but also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has been demonstrated to be effective for construction site railway rescheduling, as long as a good quality initial solution is available. In this paper, we discuss how to generate such a solution by extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track occupation, and minimum service frequency components. The SAT approach is superior to pure MIP on real-world instances of the S-Bahn Berlin network. T3 - ZIB-Report - 24-01 KW - Periodic Timetabling KW - Railway Timetabling KW - Railway Track Allocation KW - Boolean Satisfiability Problem KW - Rescheduling KW - Line Planning Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-94644 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Masing, Berenike T1 - On the Split Closure of the Periodic Timetabling Polytope N2 - The Periodic Event Scheduling Problem (PESP) is the central mathematical tool for periodic timetable optimization in public transport. PESP can be formulated in several ways as a mixed-integer linear program with typically general integer variables. We investigate the split closure of these formulations and show that split inequalities are identical with the recently introduced flip inequalities. While split inequalities are a general mixed-integer programming technique, flip inequalities are defined in purely combinatorial terms, namely cycles and arc sets of the digraph underlying the PESP instance. It is known that flip inequalities can be separated in pseudo-polynomial time. We prove that this is best possible unless P $=$ NP, but also observe that the complexity becomes linear-time if the cycle defining the flip inequality is fixed. Moreover, introducing mixed-integer-compatible maps, we compare the split closures of different formulations, and show that reformulation or binarization by subdivision do not lead to stronger split closures. Finally, we estimate computationally how much of the optimality gap of the instances of the benchmark library PESPlib can be closed exclusively by split cuts, and provide better dual bounds for five instances. T3 - ZIB-Report - 23-16 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Split Closure KW - Mixed-Integer Programming Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91156 SN - 1438-0064 ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Ebert, Patricia T1 - Forward and Line-Based Cycle Bases for Periodic Timetabling N2 - The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks, and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances. T3 - ZIB-Report - 23-05 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89731 SN - 1438-0064 ER - TY - JOUR A1 - Lindner, Niels A1 - Masing, Berenike T1 - On the split closure of the periodic timetabling polytope JF - Mathematical Programming N2 - The Periodic Event Scheduling Problem (PESP) is the central mathematical tool for periodic timetable optimization in public transport. PESP can be formulated in several ways as a mixed-integer linear program with typically general integer variables. We investigate the split closure of these formulations and show that split inequalities are identical with the recently introduced flip inequalities. While split inequalities are a general mixed-integer programming technique, flip inequalities are defined in purely combinatorial terms, namely cycles and arc sets of the digraph underlying the PESP instance. It is known that flip inequalities can be separated in pseudo-polynomial time. We prove that this is best possible unless P = NP, but also observe that the complexity becomes linear-time if the cycle defining the flip inequality is fixed. Moreover, introducing mixed-integer-compatible maps, we compare the split closures of different formulations, and show that reformulation or binarization by subdivision do not lead to stronger split closures. Finally, we estimate computationally how much of the optimality gap of the instances of the benchmark library PESPlib can be closed exclusively by split cuts, and provide better dual bounds for five instances. KW - Periodic event scheduling problem KW - Periodic timetabling KW - Split closure KW - Mixed-integer programming Y1 - 2025 U6 - https://doi.org/10.1007/s10107-025-02220-5 SN - 0025-5610 PB - Springer Science and Business Media LLC ER - TY - CHAP A1 - Lindner, Niels A1 - Masing, Berenike A1 - Liebchen, Christian T1 - Integrierte Baufahrplanoptimierung auf dem Netz der S-Bahn Berlin T2 - HEUREKA'24 - Optimierung in Verkehr und Transport N2 - Zur Instandhaltung von Eisenbahnnetzen sind regelmäßig Baumaßnahmen erforderlich. Diese erfordern stets Anpassungen der Fahrpläne. Um den Fahrgästen trotz der Baumaßnahme weiterhin einen möglichst großen Teil des Regelangebotes bieten zu können, bewegen sich die resultierenden Baufahrpläne insbesondere in Schnellbahnnetzen mit ihren dichten Zugfolgen häufig nahe der Kapazitätsgrenze der Infrastruktur. Etablierte Verfahren zur Taktfahrplanoptimierung können diesen Anforderungen nicht genügen, da in der Praxis Anpassungen von Laufwegen der Linien, sowie der Gleisbelegungen häufig Teil der realisierten Lösungen sind. Für diese Aufgabe haben die Autoren zuletzt ein Optimierungsmodell vorgestellt, welches diese Möglichkeiten ausschöpft. In dem vorliegenden Beitrag wird erstmalig dessen Anwendung auf ein unmittelbar der Praxis der Baufahrplanung entnommenes Beispiel aus dem Netz der Berliner S-Bahn im Detail beschrieben. Y1 - 2024 VL - 002/140 ER - TY - CHAP A1 - Lindner, Niels A1 - Masing, Berenike T1 - SAT-Generated Initial Solutions for Integrated Line Planning and Turn-Sensitive Periodic Timetabling with Track Choice T2 - hEART 2024: 12th Symposium of the European Association for Research in Transportation N2 - Periodic timetabling is a challenging planning task in public transport. As safety requirements are crucial, track allocation is indispensable for validating the practical feasibility of a railway timetable. For busy stations with limited capacities, this requires a detailed planning of turn-arounds. It is therefore desirable to integrate timetabling not only with track allocation, but also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has been demonstrated to be effective for construction site railway rescheduling, as long as a good quality initial solution is available. In this paper, we discuss how to generate such a solution by extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track occupation, and minimum service frequency components. The SAT approach is superior to pure MIP on real-world instances of the S-Bahn Berlin network. KW - Periodic Timetabling KW - Railway Timetabling KW - Railway Track Allocation KW - Boolean Satisfiability Problem KW - Rescheduling KW - Line Planning Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-98066 UR - https://transp-or.epfl.ch/heart/2024/abstracts/hEART_2024_paper_3685.pdf ER - TY - CHAP A1 - Lindner, Niels A1 - Liebchen, Christian A1 - Masing, Berenike T1 - Forward Cycle Bases and Periodic Timetabling T2 - 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021) N2 - Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance R1L1 of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds. Y1 - 2021 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2021.2 VL - 96 SP - 2:1 EP - 2:14 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian A1 - Masing, Berenike T1 - Forward Cycle Bases and Periodic Timetabling N2 - Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance \texttt{R1L1} of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds. T3 - ZIB-Report - 21-18 KW - Periodic Timetabling KW - Cycle Bases KW - Mixed Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82756 SN - 1438-0064 ER -