TY - JOUR A1 - del Razo, Mauricio A1 - Frömberg, Daniela A1 - Straube, Arthur A1 - Schütte, Christof A1 - Höfling, Felix A1 - Winkelmann, Stefanie T1 - A probabilistic framework for particle-based reaction–diffusion dynamics using classical Fock space representations JF - Letters in Mathematical Physics Y1 - 2022 U6 - https://doi.org/10.1007/s11005-022-01539-w VL - 112 IS - 49 ER - TY - JOUR A1 - Boltz, Horst-Holger A1 - Sirbu, Alexei A1 - Stelzer, Nina A1 - de Lanerolle, Primal A1 - Winkelmann, Stefanie A1 - Annibale, Paolo T1 - The Impact of Membrane Protein Diffusion on GPCR Signaling JF - Cells N2 - Spatiotemporal signal shaping in G protein-coupled receptor (GPCR) signaling is now a well-established and accepted notion to explain how signaling specificity can be achieved by a superfamily sharing only a handful of downstream second messengers. Dozens of Gs-coupled GPCR signals ultimately converge on the production of cAMP, a ubiquitous second messenger. This idea is almost always framed in terms of local concentrations, the differences in which are maintained by means of spatial separation. However, given the dynamic nature of the reaction-diffusion processes at hand, the dynamics, in particular the local diffusional properties of the receptors and their cognate G proteins, are also important. By combining some first principle considerations, simulated data, and experimental data of the receptors diffusing on the membranes of living cells, we offer a short perspective on the modulatory role of local membrane diffusion in regulating GPCR-mediated cell signaling. Our analysis points to a diffusion-limited regime where the effective production rate of activated G protein scales linearly with the receptor–G protein complex’s relative diffusion rate and to an interesting role played by the membrane geometry in modulating the efficiency of coupling Y1 - 2022 U6 - https://doi.org/10.3390/cells11101660 VL - 11 IS - 10 SP - 1660 ER - TY - JOUR A1 - Montefusco, Alberto A1 - Schütte, Christof A1 - Winkelmann, Stefanie T1 - A route to the hydrodynamic limit of a reaction-diffusion master equation using gradient structures JF - SIAM Journal on Applied Mathematics N2 - The reaction-diffusion master equation (RDME) is a lattice-based stochastic model for spatially resolved cellular processes. It is often interpreted as an approximation to spatially continuous reaction-diffusion models, which, in the limit of an infinitely large population, may be described by means of reaction-diffusion partial differential equations. Analyzing and understanding the relation between different mathematical models for reaction-diffusion dynamics is a research topic of steady interest. In this work, we explore a route to the hydrodynamic limit of the RDME which uses gradient structures. Specifically, we elaborate on a method introduced in [J. Maas and A. Mielke, J. Stat. Phys., 181 (2020), pp. 2257–2303] in the context of well-mixed reaction networks by showing that, once it is complemented with an appropriate limit procedure, it can be applied to spatially extended systems with diffusion. Under the assumption of detailed balance, we write down a gradient structure for the RDME and use the method in order to produce a gradient structure for its hydrodynamic limit, namely, for the corresponding RDPDE. Y1 - 2023 U6 - https://doi.org/10.1137/22M1488831 VL - 83 IS - 2 SP - 837 EP - 861 ER - TY - JOUR A1 - Engel, Maximilian A1 - Olicón-Méndez, Guillermo A1 - Wehlitz, Nathalie A1 - Winkelmann, Stefanie T1 - Synchronization and random attractors in reaction jump processes JF - Journal of Dynamics and Differential Equations N2 - This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems. Y1 - 2024 U6 - https://doi.org/10.1007/s10884-023-10345-4 ER - TY - BOOK A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Stochastic Dynamics in Computational Biology T3 - Frontiers in Applied Dynamical Systems: Reviews and Tutorials Y1 - 2020 SN - 978-3-030-62386-9 U6 - https://doi.org/10.1007/978-3-030-62387-6 VL - 8 PB - Springer International Publishing ER - TY - JOUR A1 - del Razo, Mauricio A1 - Winkelmann, Stefanie A1 - Klein, Rupert A1 - Höfling, Felix T1 - Chemical diffusion master equation: formulations of reaction-diffusion processes on the molecular level JF - Journal of Mathematical Physics N2 - The chemical diffusion master equation (CDME) describes the probabilistic dynamics of reaction--diffusion systems at the molecular level [del Razo et al., Lett. Math. Phys. 112:49, 2022]; it can be considered the master equation for reaction--diffusion processes. The CDME consists of an infinite ordered family of Fokker--Planck equations, where each level of the ordered family corresponds to a certain number of particles and each particle represents a molecule. The equations at each level describe the spatial diffusion of the corresponding set of particles, and they are coupled to each other via reaction operators --linear operators representing chemical reactions. These operators change the number of particles in the system, and thus transport probability between different levels in the family. In this work, we present three approaches to formulate the CDME and show the relations between them. We further deduce the non-trivial combinatorial factors contained in the reaction operators, and we elucidate the relation to the original formulation of the CDME, which is based on creation and annihilation operators acting on many-particle probability density functions. Finally we discuss applications to multiscale simulations of biochemical systems among other future prospects. Y1 - 2023 U6 - https://doi.org/10.1063/5.0129620 VL - 64 IS - 1 ER - TY - JOUR A1 - Thies, Arne A1 - Sunkara, Vikram A1 - Ray, Sourav A1 - Wulkow, Hanna A1 - Celik, M. Özgür A1 - Yergöz, Fatih A1 - Schütte, Christof A1 - Stein, Christoph A1 - Weber, Marcus A1 - Winkelmann, Stefanie T1 - Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design JF - Scientific Reports N2 - We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-27699-w VL - 13 IS - 607 ER - TY - JOUR A1 - Montefusco, Alberto A1 - Helfmann, Luzie A1 - Okunola, Toluwani A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Partial mean-field model for neurotransmission dynamics JF - Mathematical Biosciences N2 - This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the stochastic-spatial particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios. Y1 - 2024 U6 - https://doi.org/10.1016/j.mbs.2024.109143 VL - 369 ER - TY - GEN A1 - Ernst, Ariane A1 - Schütte, Christof A1 - Sigrist, Stephan A1 - Winkelmann, Stefanie T1 - Variance of filtered signals: Characterization for linear reaction networks and application to neurotransmission dynamics N2 - Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance to the calcium channels determines the release probability and thereby the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact first- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the filtered signal’s second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to efficiently compare different spatial coarse graining approaches for a specific model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a filtered stochastic signal. T3 - ZIB-Report - 21-15 KW - linear reaction networks KW - cross-correlation KW - neurotransmission Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82674 SN - 1438-0064 ER - TY - THES A1 - Ernst, Ariane T1 - Mathematical modeling and analysis of neurotransmission N2 - Modeling and simulation of neurotransmission plays a central role in the scientific investigation of synaptic functioning and neuronal communication. Understanding the neurotransmission process is crucial due to its fundamental significance in cognitive function, with impairments in this process potentially giving rise to severe pathological conditions. Existing modeling approaches capture the dynamic behavior and the probabilistic properties of the synaptic machinery utilizing results from stochastic chemical kinetics. However, the underlying mathematical theory rarely receives detailed consideration. In this thesis, we explore the neurotransmission process from a mathematical perspective and provide important insights that improve efficiency in its modeling and simulation. We introduce a new method for the direct and exact computation of first- and second-order moments of the postsynaptic current for the case of linear reaction networks, circumventing previously employed stochastic simulations. The approach hinges on the computation of the cross-correlation functions for the associated Markov jump process and their characterization by a partial differential equation. Our method can be applied to efficiently compare coarse-graining strategies for neurotransmission models, which we demonstrate for a significant recent model of synaptic vesicle release. We also numerically analyze the feasibility of reducing this particular model and show that a reduction can preserve the characteristics of the mean output current and its standard deviation to a satisfactory degree under typical stimulation conditions, where the approximation error can even be neglected depending on release site position. As the dependency on the local calcium concentration is preserved in the reduced model, it can be subjected to arbitrary types of signals in future studies. Moreover, we investigate the recovery processes of synaptic vesicles and release sites by introducing a nonlinear model with explicit recovery reactions. A sensitivity analysis provides the novel insight that the widely debated identity of the limiting recovery process during sustained stimulation is time-dependent. For our model, the output current’s first-order moment and its deterministic approximation show an exceptionally high level of agreement. We determine this to be an inherent consequence of the model structure due to the independence of the two recovery processes, supporting future use of the deterministic approximation. Parameter estimations confirm our model’s capability of reproducing experimental data. Y1 - 2024 ER - TY - JOUR A1 - Ernst, Ariane A1 - Unger, Nathalie A1 - Schütte, Christof A1 - Walter, Alexander A1 - Winkelmann, Stefanie T1 - Rate-limiting recovery processes in neurotransmission under sustained stimulation JF - Mathematical Biosciences N2 - At chemical synapses, an arriving electric signal induces the fusion of vesicles with the presynaptic membrane, thereby releasing neurotransmitters into the synaptic cleft. After a fusion event, both the release site and the vesicle undergo a recovery process before becoming available for reuse again. Of central interest is the question which of the two restoration steps acts as the limiting factor during neurotrans-mission under high-frequency sustained stimulation. In order to investigate this question, we introduce a novel non-linear reaction network which involves explicit recovery steps for both the vesicles and the release sites, and includes the induced time-dependent output current. The associated reaction dynamics are formulated by means of ordinary differential equations (ODEs), as well as via the associated stochastic jump process. While the stochastic jump model describes a single release site, the average over many release sites is close to the ODE solution and shares its periodic structure. The reason for this can be traced back to the insight that recovery dynamics of vesicles and release sites are statistically almost independent. A sensitivity analysis on the recovery rates based on the ODE formulation reveals that neither the vesicle nor the release site recovery step can be identified as the essential rate-limiting step but that the rate- limiting feature changes over the course of stimulation. Under sustained stimulation the dynamics given by the ODEs exhibit transient dynamics leading from an initial depression of the postsynaptic response to an asymptotic periodic orbit, while the individual trajectories of the stochastic jump model lack the oscillatory behavior an asymptotic periodicity of the ODE-solution. Y1 - 2023 U6 - https://doi.org/10.1016/j.mbs.2023.109023 VL - 362 ER - TY - JOUR A1 - Ernst, Ariane A1 - Schütte, Christof A1 - Sigrist, Stephan A1 - Winkelmann, Stefanie T1 - Variance of filtered signals: Characterization for linear reaction networks and application to neurotransmission dynamics JF - Mathematical Biosciences N2 - Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance to the calcium channels determines the release probability and thereby the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact first- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the filtered signal’s second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to efficiently compare different spatial coarse graining approaches for a specific model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a filtered stochastic signal. Y1 - 2022 U6 - https://doi.org/10.1016/j.mbs.2021.108760 VL - 343 ER - TY - JOUR A1 - Ernst, Ariane A1 - Bankowski, Anastasia A1 - Jusyte, Meida A1 - Okunola, Toluwani A1 - Petrov, Tino A1 - Walter, Alexander A1 - Winkelmann, Stefanie T1 - Parameter Optimization for a Neurotransmission Recovery Model JF - Bulletin of Mathematical Biology N2 - We assess the empirical applicability of a simplified model for neurotransmitter release that incorporates maturation, fusion, and recovery of both release sites and vesicles. Model parameters are optimized by fitting the model to experimental data obtained from neuromuscular junction synapses of 3rd-instar Drosophila melanogaster larvae. In particular, the mean-squared error between the local extrema of the simulated total junction current and its experimental counterpart is minimized. We compare three estimation approaches, differing in the choice of optimized parameters and the fusion rate function. Despite the model’s minimalistic structure, it demonstrates a compelling ability to replicate experimental data, yielding plausible parameter estimates for five different animals. An additional identifiability analysis based on the profile likelihood reveals practical non-identifiabilities for several parameters, highlighting the need for additional constraints or data to improve estimation accuracy. Y1 - 2025 U6 - https://doi.org/10.1007/s11538-025-01486-2 VL - 87 PB - Bulletin of Mathematical Biology ER - TY - JOUR A1 - Ernst, Ariane A1 - Falkenhagen, Undine A1 - Winkelmann, Stefanie T1 - Model reduction for calcium-induced vesicle fusion dynamics JF - Proceedings in Applied Mathematics & Mechanics N2 - In this work, we adapt an established model for the Ca2+-induced fusion dynamics of synaptic vesicles and employ a lumping method to reduce its complexity. In the reduced system, sequential Ca2+-binding steps are merged to a single releasable state, while keeping the important dependence of the reaction rates on the local Ca2+ concentration. We examine the feasibility of this model reduction for a representative stimulus train over the physiologically relevant site-channel distances. Our findings show that the approximation error is generally small and exhibits an interesting nonlinear and non-monotonic behavior where it vanishes for very low distances and is insignificant at intermediary distances. Furthermore, we give expressions for the reduced model’s reaction rates and suggest that our approach may be used to directly compute effective fusion rates for assessing the validity of a fusion model, thereby circumventing expensive simulations. Y1 - 2023 U6 - https://doi.org/10.1002/pamm.202300184 VL - 23 IS - 4 ER -