TY - GEN A1 - Riedmüller, Stephanie A1 - Buchholz, Annika A1 - Zittel, Janina T1 - Enhancing Multi-Energy Modeling: The Role of Mixed-Integer Optimization Decisions N2 - The goal to decarbonize the energy sector has led to increased research in modeling and optimizing multi-energy systems. One of the most promising and popular techniques for modeling and solving (multi-)energy optimization problems is (multi-objective) mixed-integer programming, valued for its ability to represent the complexities of integrated energy systems. While the literature often focuses on deriving mathematical formulations and parameter settings, less attention is given to critical post-formulation decisions. Modeling multi-energy systems as mixed-integer linear optimization programs demands decisions across multiple degrees of freedom. Key steps include reducing a real-world multi energy network into an abstract topology, defining variables, formulating the relevant (in-)equalities to represent technical requirements, setting (multiple) objectives, and integrating these elements into a mixed-integer program (MIP). However, with these elements fixed, the specific transformation of the abstract topology into a graph structure and the construction of the MIP remain non-uniquely. These choices can significantly impact user-friendliness, problem size, and computational efficiency, thus affecting the feasibility and efficiency of modeling efforts. In this work, we identify and analyze the additional degrees of freedom and describe two distinct approaches to address them. The approaches are compared regarding mathematical equivalence, suitability for solution algorithms, and clarity of the underlying topology. A case study on a realistic subarea of Berlin’s district heating network involving tri-objective optimization for a unit commitment problem demonstrates the practical significance of these decisions. By highlighting these critical yet often overlooked aspects, our work equips energy system modelers with insights to improve computational efficiency, scalability, and interpretability in their optimization efforts, ultimately enhancing the practicality and effectiveness of multi-energy system models. T3 - ZIB-Report - 25-08 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-100329 SN - 1438-0064 ER - TY - GEN A1 - Pedersen, Jaap A1 - Lindner, Niels A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Comparing Branching Rules for the Quota Steiner Tree Problem with Interference N2 - Branching decisions play a crucial role in branch-and-bound algorithms for solving combinatorial optimization problems. In this paper, we investigate several branching rules applied to the Quota Steiner Tree Problem with Interference (QSTPI). The Quota Steiner Tree Problem (QSTP) generalizes the classical Steiner Tree Problem (STP) in graphs by seeking a minimum-cost tree that connects a subset of profit-associated vertices to meet a given quota. The extended version, QSTPI, introduces interference among vertices: Selecting certain vertices simultaneously reduces their individual contributions to the overall profit. This problem arises, for example, in positioning and connecting wind turbines, where turbines possibly shadow other turbines, reducing their energy yield. While exact solvers for standard STP-related problems often rely heavily on reduction techniques and cutting-plane methods – rarely generating large branch-and-bound trees – experiments reveal that large instances of QSTPI require significantly more branching to compute provably optimal solutions. In contrast to branching on variables, we utilize the combinatorial structure of the QSTPI by branching on the graph’s vertices. We adapt classical and problem-specific branching rules and present a comprehensive computational study comparing the effectiveness of these branching strategies. T3 - ZIB-Report - 25-16 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-101250 SN - 1438-0064 ER - TY - GEN A1 - Kempke, Nils-Christian A1 - Koch, Thorsten T1 - A GPU accelerated variant of Schroeppel-Shamir's algorithm for solving the market split problem N2 - The market split problem (MSP), introduced by Cornuéjols and Dawande (1998), is a challenging binary optimization problem that performs poorly on state-of-the-art linear programming-based branch-and-cut solvers. We present a novel algorithm for solving the feasibility version of this problem, derived from Schroeppel–Shamir's algorithm for the one-dimensional subset sum problem. Our approach is based on exhaustively enumerating one-dimensional solutions of MSP and utilizing GPUs to evaluate candidate solutions across the entire problem. The resulting hybrid CPU-GPU implementation efficiently solves instances with up to 10 constraints and 90 variables. We demonstrate the algorithm's performance on benchmark problems, solving instances of size (9, 80) in less than fifteen minutes and (10, 90) in up to one day. T3 - ZIB-Report - 25-10 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-100554 SN - 1438-0064 ER - TY - JOUR A1 - Koch, Thorsten A1 - Bernal Neira, David E. A1 - Chen, Ying A1 - Cortiana, Giorgio A1 - Egger, Daniel J. A1 - Heese, Raoul A1 - Hegade, Narendra N. A1 - Gomez Cadavid, Alejandro A1 - Huang, Rhea A1 - Itoko, Toshinari A1 - Kleinert, Thomas A1 - Maciel Xavier, Pedro A1 - Mohseni, Naeimeh A1 - Montanez-Barrera, Jhon A. A1 - Nakano, Koji A1 - Nannicini, Giacomo A1 - O'Meara, Corey A1 - Pauckert, Justin A1 - Proissl, Manuel A1 - Ramesh, Anurag A1 - Schicker, Maximilian A1 - Shimada, Noriaki A1 - Takeori, Mitsuharu A1 - Valls, Victor A1 - Van Bulck, David A1 - Woerner, Stefan A1 - Zoufal, Christa T1 - Quantum Optimization Benchmark Library -- The Intractable Decathlon N2 - Through recent progress in hardware development, quantum computers have advanced to the point where benchmarking of (heuristic) quantum algorithms at scale is within reach. Particularly in combinatorial optimization -- where most algorithms are heuristics -- it is key to empirically analyze their performance on hardware and track progress towards quantum advantage. To this extent, we present ten optimization problem classes that are difficult for existing classical algorithms and can (mostly) be linked to practically-relevant applications, with the goal to enable systematic, fair, and comparable benchmarks for quantum optimization methods. Further, we introduce the Quantum Optimization Benchmark Library (QOBLIB) where the problem instances and solution track records can be found. The individual properties of the problem classes vary in terms of objective and variable type, coefficient ranges, and density. Crucially, they all become challenging for established classical methods already at system sizes ranging from less than 100 to, at most, an order of 100,000 decision variables, allowing to approach them with today's quantum computers. We reference the results from state-of-the-art solvers for instances from all problem classes and demonstrate exemplary baseline results obtained with quantum solvers for selected problems. The baseline results illustrate a standardized form to present benchmarking solutions, which has been designed to ensure comparability of the used methods, reproducibility of the respective results, and trackability of algorithmic and hardware improvements over time. We encourage the optimization community to explore the performance of available classical or quantum algorithms and hardware platforms with the benchmarking problem instances presented in this work toward demonstrating quantum advantage in optimization. Y1 - 2025 ER - TY - CHAP A1 - Riedmüller, Stephanie A1 - Buchholz, Annika A1 - Zittel, Janina T1 - Enhancing Multi-Energy Modeling: The Role of Mixed-Integer Optimization Decisions T2 - The 38th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems – ECOS 2025 N2 - The goal to decarbonize the energy sector has led to increased research in modeling and optimizing multi-energy systems. One of the most promising and popular techniques for modeling and solving (multi-)energy optimization problems is (multi-objective) mixed-integer programming, valued for its ability to represent the complexities of integrated energy systems. While the literature often focuses on deriving mathematical formulations and parameter settings, less attention is given to critical post-formulation decisions. Modeling multi-energy systems as mixed-integer linear optimization programs demands decisions across multiple degrees of freedom. Key steps include reducing a real-world multi energy network into an abstract topology, defining variables, formulating the relevant (in-)equalities to represent technical requirements, setting (multiple) objectives, and integrating these elements into a mixed-integer program (MIP). However, with these elements fixed, the specific transformation of the abstract topology into a graph structure and the construction of the MIP remain non-uniquely. These choices can significantly impact user-friendliness, problem size, and computational efficiency, thus affecting the feasibility and efficiency of modeling efforts. In this work, we identify and analyze the additional degrees of freedom and describe two distinct approaches to address them. The approaches are compared regarding mathematical equivalence, suitability for solution algorithms, and clarity of the underlying topology. A case study on a realistic subarea of Berlin’s district heating network involving tri-objective optimization for a unit commitment problem demonstrates the practical significance of these decisions. By highlighting these critical yet often overlooked aspects, our work equips energy system modelers with insights to improve computational efficiency, scalability, and interpretability in their optimization efforts, ultimately enhancing the practicality and effectiveness of multi-energy system models. Y1 - 2025 ER - TY - GEN A1 - Mehl, Lukas A1 - Lindner, Niels A1 - Bartoszuk, Karolina A1 - Zittel, Janina T1 - Prototypical warm-starts for demand-robust LP-based energy system optimization N2 - The expressiveness of energy system optimization models (ESOMs) depends on a multitude of exogenous parameters. For example, sound estimates of the future energy demand are essential to enable qualified decisions on long-term investments. However, the enormous demand fluctuations even on a fine-grained scale diminish the computational performance of large-scale ESOMs. We therefore propose a clustering-and-decomposition method for linear programming based ESOMs that first identifies and solves prototypical demand scenarios with the dual simplex algorithm, and then composes dual optimal prototype bases to a warm-start basis for the full model. We evaluate the feasibility and computational efficiency our approach on a real-world case study, using a sector-coupled ESOM with hourly resolution for the Berlin-Brandenburg area in Germany, based on the oemof framework. T3 - ZIB-Report - 25-15 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-101242 SN - 1438-0064 ER - TY - GEN A1 - Riedmüller, Stephanie A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Warm-starting Strategies in Scalarization Methods for Multi-Objective Optimization N2 - We explore how warm-starting strategies can be integrated into scalarization-based approaches for multi-objective optimization in (mixed) integer linear programming. Scalarization methods remain widely used classical techniques to compute Pareto-optimal solutions in applied settings. They are favored due to their algorithmic simplicity and broad applicability across continuous and integer programs with an arbitrary number of objectives. While warm-starting has been applied in this context before, a systematic methodology and analysis remain lacking. We address this gap by providing a theoretical characterization of warm-starting within scalarization methods, focusing on the sequencing of subproblems. However, optimizing the order of subproblems to maximize warm-start efficiency may conflict with alternative criteria, such as early identification of infeasible regions. We quantify these trade-offs through an extensive computational study. T3 - ZIB-Report - 25-12 Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-101073 SN - 1438-0064 ER - TY - CHAP A1 - Gotzes, Uwe A1 - Buchholz, Annika A1 - Kallrath, Josef A1 - Lindner, Niels A1 - Koch, Thorsten T1 - Flexible Pooling Pattern Design with Integer Programming T2 - Theory, Algorithms and Experiments in Applied Optimization. In Honor of the 70th Birthday of Panos Pardalos N2 - Sample pooling has the potential to significantly enhance large-scale screening procedures, especially in scenarios like the COVID-19 pandemic, where rapid and widespread PCR testing has been crucial. Efficient strategies are essential to increase the testing capacity, i.e., the number of tests that can be processed within a given timeframe. Non-adaptive pooling strategies can further streamline the testing process by reducing the required testing rounds. In contrast to adaptive strategies, where subsequent tests depend on prior results, non-adaptive pooling processes all samples in a single round, eliminating the need for sequential retesting and reducing delays. This paper presents a highly flexible method based on integer programming to design optimized pooling patterns suitable for various applications, including medical diagnostics and quality control in industrial production. Using coronavirus testing as a case study, we formulate and solve optimization and satisfiability models that compute efficient pool designs. Our optimized pooling does not only increase testing capacity, but also accelerates the testing process and reduces overall costs. The proposed method is adaptable and can be seamlessly integrated into automated testing systems. Y1 - 2025 VL - 226 PB - Springer ER - TY - JOUR A1 - Zhou, Lei A1 - Chen, Ying A1 - Peng, Hanqiu A1 - Koch, Thorsten T1 - Is innovation slowing down? Insights from the AIMS framework of patent values JF - Expert Systems with Applications N2 - Amidst the unprecedented expansion of scientific and technological knowledge over the past century, concerns persist regarding a slowdown in innovation. To address this, we introduce the AIMS framework, which categorizes patents into four types—Aurora, Invisible, Mirage, and Success—based on their respective inherent scientific values and market-recognized economic values. Utilizing USPTO patent and citation data from 1976 to 2022, our analysis reveals an increasing volume of patent issuances but a concerning dilution in scientific quality starting in the 2000s. This trend is primarily attributed to the rise of low scientific value patents—categorized as Mirage and Invisible—and a modest decline in high-impact scientific patents—categorized as Success and Aurora. Meanwhile, the economic value of patents has risen, especially noted with the growth in Mirage patents since the 2010s, indicating a shift towards strategies that prioritize market-driven patenting. This study highlights the evolving nature of patents from mere indicators of scientific innovation to strategic tools for market dominance, providing an alternative understanding of patent value and its implications for firms’ strategic decisions over patent issuance across different sectors. Y1 - 2025 U6 - https://doi.org/10.1016/j.eswa.2025.127355 VL - 280 SP - 127355 ER - TY - JOUR A1 - Riedmüller, Stephanie A1 - Koch, Thorsten T1 - Exact Objective Space Contraction for the Preprocessing of Multi-objective Integer Programs N2 - Solving integer optimization problems with large or widely ranged objective coefficients can lead to numerical instability and increased runtimes. When the problem also involves multiple objectives, the impact of the objective coefficients on runtimes and numerical issues multiplies. We address this issue by transforming the coefficients of linear objective functions into smaller integer coefficients. To the best of our knowledge, this problem has not been defined before. Next to a straightforward scaling heuristic, we introduce a novel exact transformation approach for the preprocessing of multi-objective binary problems. In this exact approach, the large or widely ranged integer objective coefficients are transformed into the minimal integer objective coefficients that preserve the dominance relation of the points in the objective space. The transformation problem is solved with an integer programming formulation with an exponential number of constraints. We present a cutting-plane algorithm that can efficiently handle the problem size. In a first computational study, we analyze how often and in which settings the transformation actually leads to smaller coefficients. In a second study, we evaluate how the exact transformation and a typical scaling heuristic, when used as preprocessing, affect the runtime and numerical stability of the Defining Point Algorithm. Y1 - 2025 ER - TY - JOUR A1 - Chen, Ying A1 - Koch, Thorsten A1 - Peng, Hanqui A1 - Zhang, Hongrui T1 - Benchmarking of Quantum and Classical Computing in Large-Scale Dynamic Portfolio Optimization Under Market Frictions N2 - Quantum computing is poised to transform the financial industry, yet its advantages over traditional methods have not been evidenced. As this technology rapidly evolves, benchmarking is essential to fairly evaluate and compare different computational strategies. This study presents a challenging yet solvable problem of large-scale dynamic portfolio optimization under realistic market conditions with frictions. We frame this issue as a Quadratic Unconstrained Binary Optimization (QUBO) problem, compatible with digital computing and ready for quantum computing, to establish a reliable benchmark. By applying the latest solvers to real data, we release benchmarks that help verify true advancements in dynamic trading strategies, either quantum or digital computing, ensuring that reported improvements in portfolio optimization are based on robust, transparent, and comparable metrics. Y1 - 2025 ER - TY - JOUR A1 - Petkovic, Milena A1 - Zittel, Janina T1 - Leveraging Transfer Learning to Overcome Data Limitations in Czochralski Crystal Growth JF - Advanced Theory and Simulations Y1 - 2025 U6 - https://doi.org/10.1002/adts.202500677 VL - 8 IS - 11 ER - TY - GEN A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yasuda, Masaya A1 - Kaji, Shizuo A1 - Yamamura, Keiichiro A1 - Fujisawa, Katsuki T1 - Massively parallel sharing lattice basis reduction N2 - For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments. T3 - ZIB-Report - 21-38 KW - Discrete optimization KW - Lattice problem KW - Lattice-based cryptography KW - Shortest vector problem KW - Parallel algorithms KW - Ubiquity Generator Framework Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85209 SN - 1438-0064 N1 - under review ER - TY - GEN A1 - Fujii, Koichi A1 - Kim, Sunyoung A1 - Kojima, Masakazu A1 - Mittelmann, Hans D. A1 - Shinano, Yuji T1 - An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c N2 - Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25% gap is successfully obtained, and computing an LB with 1.0% gap is shown to be still quite difficult. T3 - ZIB-Report - 23-27 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-93072 SN - 1438-0064 ER - TY - JOUR A1 - Xu, Xiaofei A1 - Chen, Ying A1 - Zhang, Ge A1 - Koch, Thorsten T1 - Modeling Functional Time Series and Mixed-Type Predictors With Partially Functional Autoregressions JF - Journal of Business & Economic Statistics Y1 - 2022 U6 - https://doi.org/https://doi.org/10.1080/07350015.2021.2011299 SN - 0735-0015 VL - 42 IS - 2 SP - 349 EP - 366 PB - Informa UK Limited ER - TY - CHAP A1 - Hadjidimitriou, Natalia Selini A1 - Lippi, Marco A1 - Nastro, Raffaele A1 - Koch, Thorsten A1 - Mamei, Marco T1 - Short-Term Forecasting of Energy Consumption and Production in Local Energy Communities T2 - 2024 32nd International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE) Y1 - 2024 U6 - https://doi.org/10.1109/WETICE64632.2024.00022 SP - 74 EP - 79 PB - IEEE ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Kamada, Hiroki A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model JF - Energy N2 - In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchical mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy supply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering relationships among integer design variables, uncertain energy demands, and integer and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Different types of optimization problems are solved by applying a hierarchical MILP method developed for ordinary optimal design problems without and with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.energy.2021.120343 VL - 229 ER - TY - JOUR A1 - Lenz, Ralf A1 - Becker, Kai-Helge T1 - Optimization of Capacity Expansion in Potential-driven Networks including Multiple Looping - A comparison of modelling approaches JF - OR Spectrum N2 - In commodity transport networks such as natural gas, hydrogen and water networks, flows arise from nonlinear potential differences between the nodes, which can be represented by so-called "potential-driven" network models. When operators of these networks face increasing demand or the need to handle more diverse transport situations, they regularly seek to expand the capacity of their network by building new pipelines parallel to existing ones ("looping"). The paper introduces a new mixed-integer non-linear programming (MINLP) model and a new non-linear programming (NLP) model and compares these with existing models for the looping problem and related problems in the literature, both theoretically and experimentally. On this basis, we give recommendations about the circumstances under which a certain model should be used. In particular, it turns out that one of our novel models outperforms the existing models. Moreover, the paper is the first to include the practically relevant option that a particular pipeline may be looped several times. Y1 - 2022 U6 - https://doi.org/https://doi.org/10.1007/s00291-021-00648-7 VL - 44 SP - 179 EP - 224 ER - TY - JOUR A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Implications, Conflicts, and Reductions for Steiner Trees JF - Mathematical Programming Y1 - 2023 U6 - https://doi.org/10.1007/s10107-021-01757-5 VL - 197 SP - 903 EP - 966 PB - Springer ER - TY - JOUR A1 - Fujii, Koichi A1 - Kim, Sunyoung A1 - Kojima, Masakazu A1 - Mittelmann, Hans D. A1 - Shinano, Yuji T1 - An exceptionally difficult binary quadratic optimization problem with symmetry: a challenge for the largest unsolved QAP instance Tai256c JF - Optimization Letters N2 - Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. Despite this difficulty, it is imperative to decrease the gap in order to ultimately solve the BQOP exactly. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the orbit branching and the isomorphism pruning. With this BB method, a new LB with 1.25% gap is successfully obtained, and computing an LB with gap is shown to be still quite difficult. Y1 - 2024 U6 - https://doi.org/10.1007/s11590-024-02157-2 SN - 1862-4472 PB - Springer Science and Business Media LLC ER - TY - JOUR A1 - Hosoda, Junko A1 - Maher, Stephen J. A1 - Shinano, Yuji A1 - Villumsen, Jonas Christoffer T1 - A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network JF - Computers & Operations Research N2 - Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems. Y1 - 2024 U6 - https://doi.org/10.1016/j.cor.2024.106570 SN - 0305-0548 VL - 165 PB - Elsevier BV ER - TY - GEN A1 - Yueksel-Erguen, Inci A1 - Litzel, Ida A1 - Peng, Hanqiu T1 - Integrating Large Citation Datasets N2 - This paper explores methods for building a comprehensive citation graph using big data techniques to evaluate scientific impact more accurately. Traditional citation metrics have limitations, and this work investigates merging large citation datasets to create a more accurate picture. Challenges of big data, like inconsistent data formats and lack of unique identifiers, are addressed through deduplication efforts, resulting in a streamlined and reliable merged dataset with over 119 million records and 1.4 billion citations. We demonstrate that merging large citation datasets builds a more accurate citation graph facilitating a more robust evaluation of scientific impact. T3 - ZIB-Report - 24-10 KW - big data preprocessing KW - data analytics KW - citation graphs Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-98033 SN - 1438-0064 ER - TY - JOUR A1 - Abbas, Amira A1 - Ambainis, Andris A1 - Augustino, Brandon A1 - Bärtschi, Andreas A1 - Buhrman, Harry A1 - Coffrin, Carleton A1 - Cortiana, Giorgio A1 - Dunjko, Vedran A1 - Egger, Daniel J. A1 - Elmegreen, Bruce G. A1 - Franco, Nicola A1 - Fratini, Filippo A1 - Fuller, Bryce A1 - Gacon, Julien A1 - Gonciulea, Constantin A1 - Gribling, Sander A1 - Gupta, Swati A1 - Hadfield, Stuart A1 - Heese, Raoul A1 - Kircher, Gerhard A1 - Kleinert, Thomas A1 - Koch, Thorsten A1 - Korpas, Georgios A1 - Lenk, Steve A1 - Marecek, Jakub A1 - Markov, Vanio A1 - Mazzola, Guglielmo A1 - Mensa, Stefano A1 - Mohseni, Naeimeh A1 - Nannicini, Giacomo A1 - O’Meara, Corey A1 - Tapia, Elena Peña A1 - Pokutta, Sebastian A1 - Proissl, Manuel A1 - Rebentrost, Patrick A1 - Sahin, Emre A1 - Symons, Benjamin C. B. A1 - Tornow, Sabine A1 - Valls, Víctor A1 - Woerner, Stefan A1 - Wolf-Bauwens, Mira L. A1 - Yard, Jon A1 - Yarkoni, Sheir A1 - Zechiel, Dirk A1 - Zhuk, Sergiy A1 - Zoufal, Christa T1 - Challenges and opportunities in quantum optimization JF - Nature Reviews Physics Y1 - 2024 U6 - https://doi.org/10.1038/s42254-024-00770-9 SN - 2522-5820 VL - 6 SP - 718 EP - 735 PB - Springer Science and Business Media LLC ER - TY - GEN A1 - Vu, Thi Huong A1 - Koch, Thorsten A1 - Xu, Hong-Kun T1 - The gradient projection method: Is the Polyak adaptive stepsize rule optimal? N2 - Not always! This is our answer to the question of whether the Polyak adaptive stepsize rule in the gradient projection method is optimal. The answer is based on revisiting the subgradient projection method by Polyak [USSR Computational Mathematics and Mathematical Physics 9 (1969)] for smooth and convex minimization problems where the objective function possesses a geometric property called flatness. Our results show that the method can be more flexible (the effective range for the parameter controlling the stepsize can be wider) and have sharper convergence rates. Applications to split feasibility/equality problems are presented, deriving for the first time the O(1/k) rate of convergence for the adaptive CQ method. A theoretical guarantee of the linear convergence of the gradient descent method with adaptive stepsizes for Google PageRank is provided. At the same time, numerical experiments are designed to spot the ``optimal" stepsize and to compare with other basic gradient methods. Y1 - 2024 ER - TY - CHAP A1 - Hadjidimitriou, Natalia Selini A1 - Koch, Thorsten A1 - Lippi, Marco A1 - Petkovic, Milena A1 - Mamei, Marco T1 - Analysis of the Impact of COVID-19 and Russo-Ukraine War on Natural Gas Flow Using Time Series Forecasting T2 - Preceedings of the 16th International Conference on Management of Digital Ecosystems Y1 - 2024 ER - TY - GEN A1 - Riedmüller, Stephanie A1 - Rivetta, Fabian A1 - Zittel, Janina T1 - Long-Term Multi-Objective Optimization for Integrated Unit Commitment and Investment Planning for District Heating Networks N2 - The need to decarbonize the energy system has intensified the focus on district heating networks in urban and suburban areas. Therefore, exploring transformation pathways with reasonable trade-offs between economic viability and environmental goals became necessary. We introduce a network-flow-based model class integrating unit commitment and long-term investment planning for multi-energy systems. While the integration of unit commitment and investment planning has been applied to multi-energy systems, a formal introduction and suitability for the application of long-term portfolio planning of an energy provider on an urban scale has yet to be met. Based on mixed integer linear programming, the model bridges the gap between overly detailed industrial modeling tools not designed for computational efficiency at scale and rather abstract academic models. The formulation is tested on Berlin's district heating network. Hence, the challenge lies in a large number of variables and constraints and the coupling of time steps, for example, through investment decisions. A case study explores different solutions on the Pareto front defined by optimal trade-offs between minimizing costs and emissions through a lexicographic optimization approach. The resulting solution catalog can provide decision-makers valuable insights into feasible transformation pathways, highlighting distinctions between robust and target-dependent investments. T3 - ZIB-Report - 24-09 KW - multi-objective optimization KW - multi-energy systems KW - investment planning KW - unit commitment Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-97804 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Bartoszuk, Karolina A1 - Debgupta, Srinwanti A1 - Gering, Marie-Claire A1 - Muschner, Christoph A1 - Zittel, Janina T1 - Warm-starting modeling to generate alternatives for energy transition paths in the Berlin-Brandenburg area N2 - Energy system optimization models are key to investigate energy transition paths towards a decarbonized future. Since this approach comes with intrinsic uncertainties, it is insufficient to compute a single optimal solution assuming perfect foresight to provide a profound basis for decision makers. The paradigm of modeling to generate alternatives enables to explore the near-optimal solution space to a certain extent. However, large-scale energy models require a non-negligible computation time to be solved. We propose to use warm start methods to accelerate the process of finding close-to-optimal alternatives. In an extensive case study for the energy transition of the Berlin-Brandenburg area, we make use of the sector-coupled linear programming oemof-B3 model to analyze a scenario for the year 2050 with a resolution of one hour and 100% reduction of greenhouse gas emissions. We demonstrate that we can actually achieve a significant computational speedup. T3 - ZIB-Report - 24-08 KW - Energy System Optimization KW - Energy Transition KW - Modeling to Generate Alternatives Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-97835 SN - 1438-0064 ER - TY - GEN A1 - Le, Thi Thai T1 - Effect of viscous forces on the interface stability of a tangential-velocity discontinuity in compressible fluids T2 - Journal N2 - Compressible flows are prevalent in natural and technological processes, particularly in the energy transition to renewable energy systems. Consequently, extensive research has focused on understanding the stability of tangential--velocity discontinuity in compressible media. Despite recent advancements that address industrial challenges more realistically, many studies have ignored viscous stress tensors' impact, leading to inaccuracies in predicting interface stability. This omission becomes critical, especially in high Reynolds or low Mach number flows, where viscous forces dissipate kinetic energy across interfaces, affect total energy dissipation, and dampen flow instabilities. Our work is thus motivated to analyze the viscosity force effect by including the viscous stress tensor terms in the motion equations. Our results show that by considering the effect of viscous forces, the tangential-velocity discontinuity interface is constantly destabilized for the entire range of the Mach number. T3 - ZIB-Report - 24-04 Y1 - 2024 ER - TY - JOUR A1 - Pedersen, Jaap A1 - Le, Thi Thai A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Optimal discrete pipe sizing for tree-shaped CO2 networks JF - OR Spectrum N2 - For industries like the cement industry, switching to a carbon-neutral production process is impossible. They must rely on carbon capture, utilization and storage (CCUS) technologies to reduce their production processes’ inevitable carbon dioxide (CO2) emissions. For transporting continuously large amounts of CO2, utilizing a pipeline network is the most effective solution; however, building such a network is expensive. Therefore minimizing the cost of the pipelines to be built is extremely important to make the operation financially feasible. In this context, we investigate the problem of finding optimal pipeline diameters from a discrete set of diameters for a tree-shaped network transporting captured CO2 from multiple sources to a single sink. The general problem of optimizing arc capacities in potential-based fluid networks is already a challenging mixed-integer nonlinear optimization problem. The problem becomes even more complex when adding the highly sensitive nonlinear behavior of CO2 regarding temperature and pressure changes. We propose an iterative algorithm splitting the problem into two parts: a) the pipe-sizing problem under a fixed supply scenario and temperature distribution and b) the thermophysical modeling, including mixing effects, the Joule-Thomson effect, and heat exchange with the surrounding environment. We demonstrate the effectiveness of our approach by applying our algorithm to a real-world network planning problem for a CO2 network in Western Germany. Further, we show the robustness of the algorithm by solving a large artificially created set of network instances. Y1 - 2024 U6 - https://doi.org/10.1007/s00291-024-00773-z VL - 46 SP - 1163 EP - 1187 ER - TY - JOUR A1 - Van Bulck, David A1 - Goossens, Dries A1 - Clarner, Jan-Patrick A1 - Dimitsas, Angelos A1 - Fonseca, Georg H. G. A1 - Lamas-Fernandez, Carlos A1 - Lester, Martin Mariusz A1 - Pedersen, Jaap A1 - Phillips, Antony E. A1 - Rosati, Roberto Maria T1 - Which algorithm to select in sports timetabling? JF - European Journal of Operational Research N2 - Any sports competition needs a timetable, specifying when and where teams meet each other. The recent International Timetabling Competition (ITC2021) on sports timetabling showed that, although it is possible to develop general algorithms, the performance of each algorithm varies considerably over the problem instances. This paper provides a problem type analysis for sports timetabling, resulting in powerful insights into the strengths and weaknesses of eight state-of-the-art algorithms. Based on machine learning techniques, we propose an algorithm selection system that predicts which algorithm is likely to perform best based on the type of competition and constraints being used (i.e., the problem type) in a given sports timetabling problem instance. Furthermore, we visualize how the problem type relates to algorithm performance, providing insights and possibilities to further enhance several algorithms. Finally, we assess the empirical hardness of the instances. Our results are based on large computational experiments involving about 50 years of CPU time on more than 500 newly generated problem instances. Y1 - 2024 U6 - https://doi.org/10.1016/j.ejor.2024.06.005 VL - 318 IS - 2 SP - 575 EP - 591 ER - TY - GEN A1 - Yueksel-Erguen, Inci A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Mathematical optimization based flow scenario generation for operational analysis of European gas transport networks based on open data N2 - The decarbonization of the European energy system demands a rapid and comprehensive transformation while securing energy supplies at all times. Still, natural gas plays a crucial role in this process. Recent unexpected events forced drastic changes in gas routes throughout Europe. Therefore, operational-level analysis of the gas transport networks and technical capacities to cope with these transitions using unconventional scenarios has become essential. Unfortunately, data limitations often hinder such analyses. To overcome this challenge, we propose a mathematical model-based scenario generator that enables operational analysis of the European gas network using open data. Our approach focuses on the consistent analysis of specific partitions of the gas transport network, whose network topology data is readily available. We generate reproducible and consistent node-based gas in/out-flow scenarios for these defined network partitions to enable feasibility analysis and data quality assessment. Our proposed method is demonstrated through several applications that address the feasibility analysis and data quality assessment of the German gas transport network. By using open data and a mathematical modeling approach, our method allows for a more comprehensive understanding of the gas transport network's behavior and assists in decision-making during the transition to decarbonization. T3 - ZIB-Report - 24-03 Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-95789 SN - 1438-0064 ER - TY - CHAP A1 - Zittel, Janina A1 - Clarner, Jan-Patrick A1 - Tawfik, Christine A1 - Dykes, Maxwell A1 - Rivetta, Fabian A1 - Riedmüller, Stephanie T1 - A multi-objective optimization strategy for district heating production portfolio planning T2 - 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024) N2 - The imperative to decarbonize energy systems has intensified the need for efficient transformations within the heating sector, with a particular focus on district heating networks. This study addresses this challenge by proposing a comprehensive optimization approach evaluated on the district heating network of the Märkisches Viertel of Berlin. Our objective is to simultaneously optimize heat production with three targets: minimizing costs, minimizing CO2-emissions, and maximizing heat generation from Combined Heat and Power (CHP) plants for enhanced efficiency. To tackle this optimization problem, we employed a Mixed-Integer Linear Program (MILP) that encompasses the conversion of various fuels into heat and power, integration with relevant markets, and considerations for technical constraints on power plant operation. These constraints include startup and minimum downtime, activation costs, and storage limits. The ultimate goal is to delineate the Pareto front, representing the optimal trade-offs between the three targets. We evaluate variants of the 𝜖-constraint algorithm for their effectiveness in coordinating these objectives, with a simultaneous focus on the quality of the estimated Pareto front and computational efficiency. One algorithm explores solutions on an evenly spaced grid in the objective space, while another dynamically adjusts the grid based on identified solutions. Initial findings highlight the strengths and limitations of each algorithm, providing guidance on algorithm selection depending on desired outcomes and computational constraints. Our study emphasizes that the optimal choice of algorithm hinges on the density and distribution of solutions in the feasible space. Whether solutions are clustered or evenly distributed significantly influences algorithm performance. These insights contribute to a nuanced understanding of algorithm selection for multi-objective multi-energy system optimization, offering valuable guidance for future research and practical applications for planning sustainable district heating networks. Y1 - 2024 U6 - https://doi.org/10.52202/077185-0066 SP - 764 EP - 775 ER - TY - JOUR A1 - Pedersen, Jaap A1 - Weinand, Jann Michael A1 - Syranidou, Chloi A1 - Rehfeldt, Daniel T1 - An efficient solver for large-scale onshore wind farm siting including cable routing JF - European Journal of Operational Research N2 - Existing planning approaches for onshore wind farm siting and grid integration often do not meet minimum cost solutions or social and environmental considerations. In this paper, we develop an exact approach for the integrated layout and cable routing problem of onshore wind farm planning using the Quota Steiner tree problem. Applying a novel transformation on a known directed cut formulation, reduction techniques, and heuristics, we design an exact solver that makes large problem instances solvable and outperforms generic MIP solvers. In selected regions of Germany, the trade-offs between minimizing costs and landscape impact of onshore wind farm siting are investigated. Although our case studies show large trade-offs between the objective criteria of cost and landscape impact, small burdens on one criterion can significantly improve the other criteria. In addition, we demonstrate that contrary to many approaches for exclusive turbine siting, grid integration must be simultaneously optimized to avoid excessive costs or landscape impacts in the course of a wind farm project. Our novel problem formulation and the developed solver can assist planners in decision-making and help optimize wind farms in large regions in the future. Y1 - 2024 U6 - https://doi.org/10.1016/j.ejor.2024.04.026 VL - 317 IS - 2 SP - 616 EP - 630 ER - TY - CHAP A1 - Kiessling, David A1 - Vanaret, Charlie A1 - Astudillo, Alejandro A1 - Decré, Wilm A1 - Swevers, Jan T1 - An Almost Feasible Sequential Linear Programming Algorithm T2 - 2024 European Control Conference (ECC), Stockholm, Sweden N2 - This paper proposes an almost feasible Sequential Linear Programming (afSLP) algorithm. In the first part, the practical limitations of previously proposed Feasible Sequential Linear Programming (FSLP) methods are discussed along with illustrative examples. Then, we present a generalization of FSLP based on a tolerance-tube method that addresses the shortcomings of FSLP. The proposed algorithm afSLP consists of two phases. Phase I starts from random infeasible points and iterates towards a relaxation of the feasible set. Once the tolerance-tube around the feasible set is reached, phase II is started and all future iterates are kept within the tolerance-tube. The novel method includes enhancements to the originally proposed tolerance-tube method that are necessary for global convergence. afSLP is shown to outperform FSLP and the state-of-the-art solver IPOPT on a SCARA robot optimization problem. Y1 - 2024 U6 - https://doi.org/10.23919/ECC64448.2024.10590864 SP - 2328 EP - 2335 ER - TY - GEN A1 - Petkovic, Milena A1 - Zakiyeva, Nazgul A1 - Zittel, Janina T1 - Statistical analysis and modeling for detecting regime changes in gas nomination time series N2 - As a result of the legislation for gas markets introduced by the European Union in 2005, separate independent companies have to conduct the transport and trading of natural gas. The current gas market of Germany, which has a market value of more than 54 billion USD, consists of Transmission System Operators (TSO), network users, and traders. Traders can nominate a certain amount of gas anytime and anywhere in the network. Such unrestricted access for the traders, on the other hand, increase the uncertainty in the gas supply management. Some customers’ behaviors may cause abrupt structural changes in gas flow time series. In particular, it is a challenging task for the TSO operators to predict gas nominations 6 to 10 hours ahead. In our study, we aim to investigate the regime changes in the time series of nominations to predict the 6 to 10 hours ahead of gas nominations. T3 - ZIB-Report - 21-22 KW - Time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82988 SN - 1438-0064 ER - TY - JOUR A1 - Petkovic, Milena A1 - Chen, Ying A1 - Gamrath, Inken A1 - Gotzes, Uwe A1 - Hadjidimitrou, Natalia Selini A1 - Zittel, Janina A1 - Xu, Xiaofei A1 - Koch, Thorsten T1 - A hybrid approach for high precision prediction of gas flows JF - Energy Systems N2 - About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition (“Energiewende”). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes. Y1 - 2022 U6 - https://doi.org/10.1007/s12667-021-00466-4 VL - 13 SP - 383 EP - 408 ER - TY - JOUR A1 - Hiller, Benjamin A1 - Saitenmacher, René A1 - Walther, Tom T1 - Improved models for operation modes of complex compressor stations JF - Mathematical Methods of Operations Research N2 - We study combinatorial structures in large-scale mixed-integer (nonlinear) programming problems arising in gas network optimization. We propose a preprocessing strategy exploiting the observation that a large part of the combinatorial complexity arises in certain subnetworks. Our approach analyzes these subnetworks and the combinatorial structure of the flows within these subnetworks in order to provide alternative models with a stronger combinatorial structure that can be exploited by off-the-shelve solvers. In particular, we consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. We propose a refined model that allows to precompute tighter bounds for each operation mode and a number of model variants based on the refined model exploiting these tighter bounds. We provide a procedure to obtain the refined model from the input data for the original model. This procedure is based on a nontrivial reduction of the graph representing the gas flow through the compressor station in an operation mode. We evaluate our model variants on reference benchmark data, showing that they reduce the average running time between 10% for easy instances and 46% for hard instances. Moreover, for three of four considered networks, the average number of search tree nodes is at least halved, showing the effectivity of our model variants to guide the solver’s search. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1007/s00186-021-00745-x VL - 94 SP - 171 EP - 195 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Takeuchi, Kotaro A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - Effect of model reduction by time aggregation in multiobjective optimal design of energy supply systems by a hierarchical MILP method JF - Energy N2 - The mixed-integer linear programming (MILP) method has been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, a method of reducing model by time aggregation has been proposed to search design candidates accurately and efficiently at the upper level. In this paper, the hierarchical MILP method and model reduction by time aggregation are applied to the multiobjective optimal design. The methods of clustering periods by the order of time series, by the k-medoids method, and based on an operational strategy are applied for the model reduction. As a case study, the multiobjective optimal design of a gas turbine cogeneration system is investigated by adopting the annual total cost and primary energy consumption as the objective functions, and the clustering methods are compared with one another in terms of the computation efficiency. It turns out that the model reduction by any clustering method is effective to enhance the computation efficiency when importance is given to minimizing the first objective function, but that the model reduction only by the k-medoids method is effective very limitedly when importance is given to minimizing the second objective function. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.energy.2021.120505 VL - 228 ER - TY - JOUR A1 - Le, Thi Thai A1 - Fukumoto, Yasuhide T1 - Effect of depth discontinuity on interfacial stability of tangential-velocity discontinuity in shallow-water flow JF - Physics Letters A N2 - It is well known as the Kelvin-Helmholtz instability (KHI) that an interface of tangential velocity discontinuity is necessarily unstable, regardless of the velocity difference's strength. However, the KHI is suppressed for shallow water flows if the Froude number, defined by the ratio of the velocity difference to the gravity wave's speed, is sufficiently large. In this investigation, we examine the effect of the depth difference of two fluid layers on the KHI. The depth difference enhances instability. Given the Froude number in the instability range, the growth rate sensitively depends on the depth ratio and increases monotonically with the depth ratio difference from unity. The critical value of the Froude number for stabilization varies with the depth ratio and attains the minimum value √8 for equal depth. This behavior is verified by asymptotic analysis. Y1 - 2022 U6 - https://doi.org/10.1016/j.physleta.2022.128073 VL - 436 SP - 128073 PB - ELSEVIER ER - TY - CHAP A1 - Pedersen, Jaap A1 - Hoppmann-Baum, Kai A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid T2 - Operations Research Proceedings 2021 N2 - In the transition towards a pure hydrogen infrastructure, repurposing the existing natural gas infrastructure is considered. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length. Y1 - 2022 U6 - https://doi.org/https://doi.org/10.1007/978-3-031-08623-6_28 SP - 182 EP - 187 ER - TY - JOUR A1 - Berthold, Timo A1 - Koch, Thorsten A1 - Shinano, Yuji T1 - MILP. Try. Repeat. JF - Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021 Y1 - 2021 VL - 2 ER - TY - GEN A1 - Zakiyeva, Nazgul A1 - Petkovic, Milena T1 - Modeling and forecasting gas network flows with multivariate time series and mathematical programming approach N2 - With annual consumption of approx. 95 billion cubic me-ters and similar amounts of gas just transshipped through Germany toother EU states, Germany’s gas transport system plays a vital role inEuropean energy supply. The complex, more than 40,000 km long high-pressure transmission network is controlled by several transmission sys-tem operators (TSOs) whose main task is to provide security of supplyin a cost-efficient way. Given the slow speed of gas flows through the gastransmission network pipelines, it has been an essential task for the gasnetwork operators to enhance the forecast tools to build an accurate andeffective gas flow prediction model for the whole network. By incorpo-rating the recent progress in mathematical programming and time seriesmodeling, we aim to model natural gas network and predict gas in- andout-flows at multiple supply and demand nodes for different forecastinghorizons. Our model is able to describe the dynamics in the network bydetecting the key nodes, which may help to build an optimal manage-ment strategy for transmission system operators. T3 - ZIB-Report - 21-23 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82966 SN - 1438-0064 ER - TY - JOUR A1 - Petkovic, Milena A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Deep learning for spatio-temporal supply anddemand forecasting in natural gas transmission networks JF - Energy Science and Engineering N2 - Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21%. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1002/ese3.932 ER - TY - CHAP A1 - Diekerhof, M. A1 - Monti, A. A1 - Lebedeva, E. A1 - Tkaczyk, A. H. A1 - Yüksel-Ergün, I. A1 - Zittel, J. A1 - Escudero, L. F. A1 - Soroudi, A. A1 - Helmberg, C. A1 - Kanovíc, Ž. A1 - Petkovic, M. A1 - Lacalandra, F. A1 - Frangioni, A. A1 - Lee, J. A1 - De Filippo, A. A1 - Lombardi, M. A1 - Milano, M. A1 - Ezran, P. A1 - Haddad, Y. T1 - Production and Demand Management T2 - Mathematical Optimization for Efficient and Robust Energy Networks N2 - Demand Side Management (DSM) is usually considered as a process of energy consumption shifting from peak hours to off-peak times. DSM does not always reduce total energy consumption, but it helps to meet energy demand and supply. For example, it balances variable generation from renewables (such as solar and wind) when energy demand differs from renewable generation. Y1 - 2020 SN - 978-3-030-57442-0 U6 - https://doi.org/https://doi.org/10.1007/978-3-030-57442-0_1 VL - 4 PB - Springer ER - TY - CHAP A1 - Schwarz, R. A1 - Lacalandra, F. A1 - Schewe, L. A1 - Bettinelli, A. A1 - Vigo, D. A1 - Bischi, A. A1 - Parriani, T. A1 - Martelli, E. A1 - Vuik, K. A1 - Lenz, R. A1 - Madsen, H. A1 - Blanco, I. A1 - Guericke, D. A1 - Yüksel-Ergün, I. A1 - Zittel, J. T1 - Network and Storage T2 - Mathematical Optimization for Efficient and Robust Energy Networks N2 - Natural gas is considered by many to be the most important energy source for the future. The objectives of energy commodities strategic problems can be mainly related to natural gas and deal with the definition of the “optimal” gas pipelines design which includes a number of related sub problems such as: Gas stations (compression) location and Gas storage locations, as well as compression station design and optimal operation. Y1 - 2020 SN - 978-3-030-57442-0 U6 - https://doi.org/https://doi.org/10.1007/978-3-030-57442-0_6 VL - 4 PB - Springer ER - TY - GEN A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yamamura, Keiichiro A1 - Yoshida, Akihiro A1 - Kaji, Shizuo A1 - Yasuda, Masaya A1 - Fujisawa, Katsuki T1 - CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems N2 - Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments. T3 - ZIB-Report - 21-16 KW - Discrete optimization KW - Lattice problem KW - Lattice-based cryptography KW - Shortest vector problem KW - Parallel algorithms KW - Ubiquity Generator Framework Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82802 SN - 1438-0064 N1 - Revised version is accepted to HiPC 2021 ER - TY - GEN A1 - Koch, Thorsten A1 - Berthold, Timo A1 - Pedersen, Jaap A1 - Vanaret, Charlie T1 - Progress in Mathematical Programming Solvers from 2001 to 2020 N2 - This study investigates the progress made in LP and MILP solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving LP/MILP, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for LP and around 50 for MILP, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time. T3 - ZIB-Report - 21-20 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82779 SN - 1438-0064 ER - TY - GEN A1 - Pedersen, Jaap A1 - Hoppmann-Baum, Kai A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid; Technical Report N2 - In the transition towards a pure hydrogen infrastructure, utilizing the existing natural gas infrastructure is a necessity. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length. T3 - ZIB-Report - 21-21 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82838 SN - 1438-0064 ER - TY - JOUR A1 - Hennings, Felix T1 - Large-scale empirical study on the momentum equation's inertia term JF - Journal of Natural Gas Science and Engineering N2 - A common approach to reduce the Euler equations' complexity for the simulation and optimization of gas networks is to neglect small terms that contribute little to the overall equations. An example is the inertia term of the momentum equation, which is said to be of negligible size under real-world operating conditions. However, this justification has always only been based on experience or single sets of artificial data points. This study closes this gap by presenting a large-scale empirical evaluation of the absolute and relative size of the inertia term when operating a real-world gas network. Our data consists of three years of fine-granular state data of one of the largest gas networks in Europe, featuring over 6,000 pipes with a total length of over 10,000 km. We found that there are only 120 events in which a subnetwork consisting of multiple pipes has an inertia term of high significance for more than three minutes. On average, such an event occurs less often than once every ten days. Therefore, we conclude that the inertia term is indeed negligible for real-world transient gas network control problems. Y1 - 2021 U6 - https://doi.org/10.1016/j.jngse.2021.104153 VL - 95 PB - Elsevier ER - TY - JOUR A1 - Le, Thi Thai A1 - Koch, Thorsten T1 - Interface stability of compressible fluids in porous media JF - Physics of Fluids N2 - The stability of flows in porous media plays a vital role in transiting energy supply from natural gas to hydrogen, especially for estimating the usability of existing underground gas storage infrastructures. Thus, this research aims to analyze the interface stability of the tangential-velocity discontinuity between two compressible gases by using Darcy's model to include the porosity effect. The results shown in this research will be a basis for considering whether underground gas storages in porous material can be used to store hydrogen. We show the relation between the Mach number M, the viscosity \mu, and the porosity \epsilon on the stability of the interface. This interface stability affects gases' withdrawal and injection processes, thus will help us to determine the velocity which with gas can be extracted and injected into the storage effectively. By imposing solid walls along the flow direction, the critical values of these parameters regarding the stability of the interface are smaller than when considering no walls. The consideration of bounded flows approaches the problem more realistically. In particular, this analysis plays a vital role when considering two-dimensional gas flows in storages and pipes. Y1 - 2021 U6 - https://doi.org/10.1063/5.0059336 VL - 33 IS - 8 SP - 084102 PB - AIP Publishing ER - TY - JOUR A1 - Hoppmann-Baum, Kai T1 - On the Complexity of Computing Maximum and Minimum Min‐Cost‐Flows JF - Networks N2 - Consider a flow network, i.e., a directed graph where each arc has a nonnegative capacity value and an associated length, together with nonempty supply intervals for the sources and nonempty demand intervals for the sinks. The Maximum Min-Cost-Flow Problem (MaxMCF) is to find fixed supply and demand values within these intervals such that the optimal objective value of the induced Min-Cost-Flow Problem (MCF) is maximized. In this paper, we show that MaxMCF as well as its uncapacitated variant, the Maximum Transportation Problem (MaxTP), are NP-hard. Further, we prove that MaxMCF is APX-hard if a connectedness-condition regarding the sources and the sinks of the flow network is dropped. Finally, we show how the Minimum Min-Cost-Flow Problem (MinMCF) can be solved in polynomial time. Y1 - 2021 U6 - https://doi.org/10.1002/net.22060 ER - TY - JOUR A1 - Alzaatreh, Ayman A1 - Aljarrah, Mohammad A1 - Almagambetova, Ayanna A1 - Zakiyeva, Nazgul T1 - On the Regression Model for Generalized Normal Distributions JF - Entropy N2 - The traditional linear regression model that assumes normal residuals is applied extensively in engineering and science. However, the normality assumption of the model residuals is often ineffective. This drawback can be overcome by using a generalized normal regression model that assumes a non-normal response. In this paper, we propose regression models based on generalizations of the normal distribution. The proposed regression models can be used effectively in modeling data with a highly skewed response. Furthermore, we study in some details the structural properties of the proposed generalizations of the normal distribution. The maximum likelihood method is used for estimating the parameters of the proposed method. The performance of the maximum likelihood estimators in estimating the distributional parameters is assessed through a small simulation study. Applications to two real datasets are given to illustrate the flexibility and the usefulness of the proposed distributions and their regression models. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.3390/e23020173 VL - 23 IS - 2 SP - 173 ER - TY - JOUR A1 - Jin, Liangbing A1 - Le, Thi Thai A1 - Fukumoto, Yasuhide T1 - Frictional effect on stability of discontinuity interface in tangential velocity of a shallow-water flow JF - Physics Letters A N2 - We examine a frictional effect on the linear stability of an interface of discontinuity in tangential velocity. The fluid is moving with uniform velocity U in a region but is at rest in the other, and the bottom surface is assumed to exert drag force, quadratic in velocity, on the thin fluid layer. In the absence of the drag, the instability of the Kelvin-Helmholtz type is suppressed for U>√8 c, with c being the propagating speed of the gravity wave. We find by asymptotic analyses for both small and large values of the drag strength that the drag, regardless of its strength, makes the flow unstable for the whole range of the Froude number U/c. Y1 - 2019 U6 - https://doi.org/10.1016/j.physleta.2019.125839 VL - 383 IS - 26 SP - 125839 ER - TY - GEN A1 - Lenz, Ralf T1 - Pipe Merging for Transient Gas Network Problems N2 - In practice, transient gas transport problems frequently have to be solved for large-scale gas networks. Gas network optimization problems typically belong to the class of Mixed-Integer Nonlinear Programming Problems (MINLP). However current state-of-the-art MINLP solvers are not yet mature enough to solve large-scale real-world instances. Therefore, an established approach in practice is to solve the problems with respect to a coarser representation of the network and thereby reducing the size of the underlying model. Two well-known aggregation methods that effectively reduce the network size are parallel and serial pipe merges. However, these methods have only been studied in stationary gas transport problems so far. This paper closes this gap and presents parallel and serial pipe merging methods in the context of transient gas transport. To this end, we introduce the concept of equivalent and heuristic subnetwork replacements. For the heuristic methods, we conduct a huge empirical evaluation based on real-world data taken from one of the largest gas networks in Europe. It turns out that both, parallel and serial pipe merging can be considered as appropriate aggregation methods for real-world transient gas flow problems. T3 - ZIB-Report - 21-10 KW - Pipe merging KW - Network aggregation KW - Gas network optimization KW - Transient gas flow transport KW - Nonlinear Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82116 SN - 1438-0064 ER - TY - JOUR A1 - Rehfeldt, Daniel A1 - Hobbie, Hannes A1 - Schönheit, David A1 - Koch, Thorsten A1 - Möst, Dominik A1 - Gleixner, Ambros T1 - A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models JF - European Journal of Operational Research N2 - Linear energy system models are a crucial component of energy system design and operations, as well as energy policy consulting. If detailed enough, such models lead to large-scale linear programs, which can be intractable even for the best state-of-the-art solvers. This article introduces an interior-point solver that exploits common structures of energy system models to efficiently run in parallel on distributed-memory systems. The solver is designed for linear programs with doubly-bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. In order to handle the large number of linking constraints and variables commonly observed in energy system models, a distributed Schur complement preconditioner is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the solver PIPS-IPM. We evaluate the computational performance on energy system models with up to four billion nonzero entries in the constraint matrix—and up to one billion columns and one billion rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market-clearing. It has been widely applied in the literature on energy system analyses in recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models. Y1 - 2022 U6 - https://doi.org/10.1016/j.ejor.2021.06.063 VL - 296 IS - 1 SP - 60 EP - 71 ER - TY - JOUR A1 - Le, Thi Thai T1 - Kelvin-Helmholtz instability in a shallow-water flow with a finite width JF - Journal of Mathematical Physics N2 - We examine an effect of side walls on the linear stability of an interface of tangential-velocity discontinuity in shallow-water flow. The flow is pure horizontal in the plane xy, and the fluid is bounded in a finite width 2d in the y− direction. In region 0 < y < d, the fluid is moving with uniform velocity U but is at rest for −d < y < 0. Without side walls, the flow is unstable for a velocity difference U<√8c U < √8 c, with c being the velocity of gravity waves. In this work, we show that if the velocity difference U is smaller than 2c, the interface is always destabilized, also known as the flow is unstable. The unstable region of an infinite width model is shrunken by the effects of side walls in the case of narrow width, while there is no range for the Froude number for stabilization in the case of large width. These results play an important role in predicting the wave propagations and have a wide application in the fields of industry. As a result of the interaction of waves and the mean flow boundary, the flow is unstable, which is caused by a decrease in the kinetic energy of disturbance. Y1 - 2019 U6 - https://doi.org/10.1063/1.5126321 VL - 60 IS - 1 SP - 123101 PB - AIP Publishing ER - TY - CHAP A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Implications, conflicts, and reductions for Steiner trees T2 - Integer Programming and Combinatorial Optimization: 22th International Conference, IPCO 2021 Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-73879-2_33 SP - 473 EP - 487 ER - TY - GEN A1 - Hennings, Felix T1 - Large-scale empirical study on the momentum equation's inertia term N2 - A common approach to reduce the Euler equations' complexity for the simulation and optimization of gas networks is to neglect small terms that contribute little to the overall equations. An example is the inertia term of the momentum equation since it is said to be of negligible size under real-world operating conditions. However, this justification has always only been based on experience or single sets of artificial data points. This study closes this gap by presenting a large-scale empirical evaluation of the absolute and relative size of the inertia term when operating a real-world gas network. Our data consists of three years of fine-granular state data of one of the largest gas networks in Europe, featuring over 6,000 pipes with a total length of over 10,000 km. We found that there are only 120 events in which a subnetwork consisting of multiple pipes has an inertia term of high significance for more than three minutes. On average, such an event occurs less often than once every ten days. Therefore, we conclude that the inertia term is indeed negligible for real-world transient gas network control problems. T3 - ZIB-Report - 21-08 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81881 SN - 1438-0064 ER - TY - JOUR A1 - Le, Thi Thai T1 - Effect of water depth on Kelvin - Helmholtz instability in a shallow-water flow JF - Journal of Mathematical Physics N2 - It is well known that the interface between two regions of an incompressible ideal fluid flow moving in a relative motion is necessarily destabilized, regardless of the velocity difference's strength. This phenomenon is the so-called Kelvin-Helmholtz instability (KHI). However, a large number of works demonstrated a surprising result that the instability is suppressed for shallow water flows; the interface is stabilized if the Froude number, defined by the velocity difference's ratio to the gravity wave's speed, is sufficiently large. In a limited way, these authors have been used the shallow-water equations without the higher-order effect of the dispersive terms. Thus, this investigation aims to examine these higher-order dispersive effects to analyze the interface stability problem of tangential-velocity discontinuity in shallow-water flows. In particular, we use the Green-Naghdi equations to introduce the dispersive terms related to the depth and the depth-averaged horizontal velocities of the fluid. We show that the interface stability depends on the Froude number (i.e., the velocity difference's strength) and the water depth. A critical value of the Froude number to stabilize the interface is smaller than the case of no dispersive terms, and the flow in a deeper region is more stable than in a shallower one. We also consider the distribution of kinetic and potential energy to clarify a feature characteristic of a large class of instabilities in shallow water flow. The instability of flows is caused by the decrease in the kinetic energy during the perturbation of waves. This phenomenon is known as negative energy modes and plays a vital role in applying the model to industrial equipment. A conclusion is that the equipartition of energies occurs if and only if the velocity difference is zero and the water depth is shallow enough to ignore the dispersive terms. Y1 - 2021 U6 - https://doi.org/10.1063/1.5145060 VL - 62 IS - 10 PB - AIP Publishing ER - TY - CHAP A1 - Pedersen, Jaap A1 - Schachler, Birgit A1 - Heider, Anya A1 - Pleßmann, Guido T1 - Distribution System Planning with Battery Storage using Multiperiod Optimal Power Flow T2 - 14th International Renewable Energy Storage Conference 2020 (IRES 2020) N2 - The ongoing energy transition introduces new challenges for distribution networks and brings about the need to expand existing power grid capacities. In order to contain network expansion and with it economic costs, utilization of various flexibility options to reduce expansion needs is discussed. This paper proposes a multiperiod optimal power flow (MPOPF) approach with a new continuous network expansion formulation to optimize the deployment of flexibility options under the objective of minimizing network expansion costs. In a comparison of the newly proposed continuous network expansion formulation with an existing mixed integer formulation and a continuous interpretation of the latter the here proposed formulation is shown to be useful in order to obtain a solvable problem and contain computational efforts. The presented MPOPF including the flexibility options storage units and curtailment is then assessed on synthetic medium voltage grids and applied to evaluate the benefit of a combined vs. a stepwise optimization of these flexibility options. It is demonstrated that using a local solver the proposed approach is applicable and yields a solution in reasonable time. Furthermore, it is shown that the combined optimization generally leads to a more efficient utilization of the considered flexibility options and therefore lower grid expansion costs than the stepwise consideration. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.2991/ahe.k.210202.007 VL - 6 SP - 41 EP - 48 ER - TY - JOUR A1 - Anderson, Lovis A1 - Turner, Mark A1 - Koch, Thorsten T1 - Generative deep learning for decision making in gas networks JF - Mathematical Methods of Operations Research N2 - A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. With the trained network we produce a feasible solution in 2.5s, use it as a warm-start solution, and thereby decrease global optimal solution solve time by 60.5%. Y1 - 2022 U6 - https://doi.org/10.1007/s00186-022-00777-x VL - 95 SP - 503 EP - 532 PB - Springer Nature ER - TY - JOUR A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - On the exact solution of prize-collecting Steiner tree problems JF - INFORMS Journal on Computing Y1 - 2021 U6 - https://doi.org/10.1287/ijoc.2021.1087 ER - TY - JOUR A1 - Hennings, Felix A1 - Anderson, Lovis A1 - Hoppmann-Baum, Kai A1 - Turner, Mark A1 - Koch, Thorsten T1 - Controlling transient gas flow in real-world pipeline intersection areas JF - Optimization and Engineering N2 - Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1007/s11081-020-09559-y VL - 22 SP - 687 EP - 734 PB - Springer Nature ET - 2 ER - TY - JOUR A1 - Rössig, Ansgar A1 - Petkovic, Milena T1 - Advances in Verification of ReLU Neural Networks JF - Journal of Global Optimization N2 - We consider the problem of verifying linear properties of neural networks. Despite their success in many classification and prediction tasks, neural networks may return unexpected results for certain inputs. This is highly problematic with respect to the application of neural networks for safety-critical tasks, e.g. in autonomous driving. We provide an overview of algorithmic approaches that aim to provide formal guarantees on the behavior of neural networks. Moreover, we present new theoretical results with respect to the approximation of ReLU neural networks. On the other hand, we implement a solver for verification of ReLU neural networks which combines mixed integer programming (MIP) with specialized branching and approximation techniques. To evaluate its performance, we conduct an extensive computational study. For that we use test instances based on the ACAS Xu System and the MNIST handwritten digit data set. Our solver is publicly available and able to solve the verification problem for instances which do not have independent bounds for each input neuron. Y1 - 2020 U6 - https://doi.org/10.1007/s10898-020-00949-1 PB - Springer ER - TY - CHAP A1 - Riedmüller, Stephanie A1 - Rivetta, Fabian A1 - Zittel, Janina T1 - Long-Term Multi-Objective Optimization for Integrated Unit Commitment and Investment Planning for District Heating Networks BT - Selected Papers of the International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), Munich, Germany, September 3-6, 2024 T2 - Operations Research Proceedings 2024 N2 - The need to decarbonize the energy system has intensified the focus on district heating networks in urban and suburban areas. Therefore, exploring transformation pathways with reasonable trade-offs between economic viability and environmental goals became necessary. We introduce a network-flow-based model class integrating unit commitment and long-term investment planning for multi-energy systems. While the integration of unit commitment and investment planning has been applied to multi-energy systems, a formal introduction and suitability for the application of long-term portfolio planning of an energy provider on an urban scale has yet to be met. Based on mixed integer linear programming, the model bridges the gap between overly detailed industrial modeling tools not designed for computational efficiency at scale and rather abstract academic models. The formulation is tested on Berlin’s district heating network. Hence, the challenge lies in a large number of variables and constraints and the coupling of time steps, for example, through investment decisions. A case study explores different solutions on the Pareto front defined by optimal trade-offs between minimizing costs and CO2 emissions through a lexicographic optimization approach. The resulting solution catalog can provide decision-makers valuable insights into feasible transformation pathways, highlighting distinctions between robust and target-dependent investments. Y1 - 2025 U6 - https://doi.org/10.1007/978-3-031-92575-7_33 SP - 235 EP - 241 PB - Springer Cham ER - TY - CHAP A1 - Petkovic, Milena A1 - Zittel, Janina T1 - Resilient Forecasting of High-Dimensional Network Time Series in the Energy Domain: A Hybrid Approach T2 - Operations Research Proceedings 2023. OR 2023 N2 - Energy systems are complex networks consisting of various interconnected components. Accurate energy demand and supply forecasts are crucial for efficient system operation and decision-making. However, high-dimensional data, complex network structures, and dynamic changes and disruptions in energy networks pose significant challenges for forecasting models. To address this, we propose a hybrid approach for resilient forecasting of network time series (HRF-NTS) in the energy domain. Our approach combines mathematical optimization methods with state-of-the-art machine learning techniques to achieve accurate and robust forecasts for high-dimensional energy network time series. We incorporate an optimization framework to account for uncertainties and disruptive changes in the energy system. The effectiveness of the proposed approach is demonstrated through a case study of forecasting energy demand and supply in a complex, large-scale natural gas transmission network. The results show that the hybrid approach outperforms alternative prediction models in terms of accuracy and resilience to structural changes and disruptions, providing stable, multi-step ahead forecasts for different short to mid-term forecasting horizons. Y1 - 2025 U6 - https://doi.org/10.1007/978-3-031-58405-3_48 SP - 375 EP - 381 PB - Springer ER - TY - CHAP A1 - Yueksel-Erguen, Inci A1 - Koch, Thorsten A1 - Zittel, Janina T1 - Consistent flow scenario generation based on open data for operational analysis of European gas transport networks T2 - Operations Research Proceedings 2023. OR 2023 N2 - In recent years, European gas transport has been affected by major disruptive events like political issues such as, most recently, the Russian war on Ukraine. To incorporate the impacts of such events into decision-making during the energy transition, more complex models for gas network analysis are required. However, the limited availability of consistent data presents a significant obstacle in this endeavor. We use a mathematical-modeling-based scenario generator to deal with this obstacle. The scenario generator consists of capacitated network flow models representing the gas network at different aggregation levels. In this study, we present the coarse-to-fine approach utilized in this scenario generator. Y1 - 2025 U6 - https://doi.org/10.1007/978-3-031-58405-3_63 SP - 493 EP - 499 PB - Springer ER - TY - CHAP A1 - Yueksel Erguen, Inci A1 - Litzel, Ida A1 - Peng, Hanqiu T1 - Integrating Large Citation Datasets T2 - Operations Research Proceedings 2024. OR 2024 N2 - This paper explores methods for building a comprehensive citation graph using big data techniques to evaluate scientific impact more accurately. Traditional citation metrics have limitations, and this work investigates merging large citation datasets to create a more accurate picture. Challenges of big data, like inconsistent data formats and lack of unique identifiers, are addressed through deduplication efforts, resulting in a streamlined and reliable merged dataset with over 119 million records and 1.4 billion citations. We demonstrate that merging large citation datasets builds a more accurate citation graph facilitating a more robust evaluation of scientific impact. Y1 - 2025 U6 - https://doi.org/10.1007/978-3-031-92575-7_7 SP - 46 EP - 52 ER - TY - JOUR A1 - Zakiyeva, Nazgul A1 - Petkovic, Milena T1 - High-dimensional high-frequency time series prediction with a mixed integer optimisation method JF - Operations Research Proceedings 2023. OR 2023 N2 - We study a functional autoregressive model for high-frequency time series. We approach the estimation of the proposed model using a Mixed Integer Optimisation method. The proposed model captures serial dependence in the functional time series by including high-dimensional curves. We illustrate our methodology on large-scale natural gas network data. Our model provides more accurate day-ahead hourly out-of-sample forecast of the gas in and out-flows compared to alternative prediction models. Y1 - 2025 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-93068 SN - 1438-0064 SP - 423 EP - 429 ER - TY - THES A1 - Rehfeldt, Daniel T1 - Faster algorithms for Steiner tree and related problems: From theory to practice KW - Steiner tree problem Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85148 ER - TY - GEN A1 - Hennings, Felix A1 - Petkovic, Milena A1 - Streubel, Tom T1 - On the Numerical Treatment of Interlaced Target Values - Modeling, Optimization and Simulation of Regulating Valves in Gas Networks N2 - Due to the current and foreseeable shifts in energy production, the trading and transport operations of gas will become more dynamic, volatile, and hence also less predictable. Therefore, computer-aided support in terms of rapid simulation and control optimization will further broaden its importance for gas network dispatching. In this paper, we aim to contribute and openly publish two new mathematical models for regulators, also referred to as control valves, which together with compressors make up the most complex and involved types of active elements in gas network infrastructures. They provide full direct control over gas networks but are in turn controlled via target values, also known as set-point values, themselves. Our models incorporate up to six dynamical target values to define desired transient states for the elements' local vicinity within the network. That is, each pair of every two target values defines a bounding box for the inlet pressure, outlet pressure as well as the passing mass flow of gas. In the proposed models, those target values are prioritized differently and are constantly in competition with each other, which can only be resolved dynamically at run-time of either a simulation or optimization process. Besides careful derivation, we compare simulation and optimization results with predictions of the commercial simulation tool SIMONE. T3 - ZIB-Report - 21-32 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85359 SN - 1438-0064 ER - TY - JOUR A1 - Aigner, Kevin-Martin A1 - Clarner, Jan-Patrick A1 - Liers, Frauke A1 - Martin, Alexander T1 - Robust Approximation of Chance Constrained DC Optimal Power Flow under Decision-Dependent Uncertainty JF - European Journal of Operational Research N2 - We propose a mathematical optimization model and its solution for joint chance constrained DC Optimal Power Flow. In this application, it is particularly important that there is a high probability of transmission limits being satisfied, even in the case of uncertain or fluctuating feed-in from renewable energy sources. In critical network situations where the network risks overload, renewable energy feed-in has to be curtailed by the transmission system operator (TSO). The TSO can reduce the feed-in in discrete steps at each network node. The proposed optimization model minimizes curtailment while ensuring that there is a high probability of transmission limits being maintained. The latter is modeled via (joint) chance constraints that are computationally challenging. Thus, we propose a solution approach based on the robust safe approximation of these constraints. Hereby, probabilistic constraints are replaced by robust constraints with suitably defined uncertainty sets constructed from historical data. The ability to discretely control the power feed-in then leads to a robust optimization problem with decision-dependent uncertainties, i.e. the uncertainty sets depend on decision variables. We propose an equivalent mixed-integer linear reformulation for box uncertainties with the exact linearization of bilinear terms. Finally, we present numerical results for different test cases from the Nesta archive, as well as for a real network. We consider the discrete curtailment of solar feed-in, for which we use real-world weather and network data. The experimental tests demonstrate the effectiveness of this method and run times are very fast. Moreover, on average the calculated robust solutions only lead to a small increase in curtailment, when compared to nominal solutions. Y1 - 2021 ER - TY - CHAP A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yamamura, Keiichiro A1 - Yoshida, Akihiro A1 - Kaji, Shizuo A1 - Yasuda, Masaya A1 - Fujisawa, Katsuki T1 - CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems T2 - HiPC 2021 proceedings N2 - Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments. Y1 - 2021 ER - TY - JOUR A1 - Xu, Xiaofei A1 - Chen, Ying A1 - Zhang, Ge A1 - Koch, Thorsten T1 - Modeling functional time series and mixed-type predictors with partially functional autoregressions* JF - Journal of Business and Economic Statistics N2 - In many business and economics studies, researchers have sought to measure the dynamic dependence of curves with high-dimensional mixed-type predictors. We propose a partially functional autoregressive model (pFAR) where the serial dependence of curves is controlled by coefficient operators that are defined on a two-dimensional surface, and the individual and group effects of mixed-type predictors are estimated with a two-layer regularization. We develop an efficient estimation with the proven asymptotic properties of consistency and sparsity. We show how to choose the sieve and tuning parameters in regularization based on a forward-looking criterion. In addition to the asymptotic properties, numerical validation suggests that the dependence structure is accurately detected. The implementation of the pFAR within a real-world analysis of dependence in German daily natural gas flow curves, with seven lagged curves and 85 scalar predictors, produces superior forecast accuracy and an insightful understanding of the dynamics of natural gas supply and demand for the municipal, industry, and border nodes, respectively. Y1 - 2021 U6 - https://doi.org/10.1080/07350015.2021.2011299 SP - 1 EP - 43 ER - TY - JOUR A1 - Rehfeldt, Daniel A1 - Franz, Henriette A1 - Koch, Thorsten T1 - Optimal Connected Subgraphs: Integer Programming Formulations and Polyhedra JF - Networks Y1 - 2022 U6 - https://doi.org/10.1002/net.22101 VL - 80 IS - 3 SP - 314 EP - 332 PB - Wiley ER - TY - THES A1 - Lenz, Ralf T1 - Optimization of Stationary Expansion Planning and Transient Network Control by Mixed-Integer Nonlinear Programming Y1 - 2021 UR - http://dx.doi.org/10.14279/depositonce-12765 U6 - https://doi.org/10.14279/depositonce-12765 ER - TY - JOUR A1 - Vu, Thi Huong A1 - Litzel, Ida A1 - Koch, Thorsten T1 - Similarity-based fuzzy clustering scientific articles: potentials and challenges from mathematical and computational perspectives JF - Journal of Nonlinear and Variational Analysis N2 - Fuzzy clustering, which allows an article to belong to multiple clusters with soft membership degrees, plays a vital role in analyzing publication data. This problem can be formulated as a constrained optimization model, where the goal is to minimize the discrepancy between the similarity observed from data and the similarity derived from a predicted distribution. While this approach benefits from leveraging state-of-the-art optimization algorithms, tailoring them to work with real, massive databases like OpenAlex or Web of Science - containing about 70 million articles and a billion citations - poses significant challenges. We analyze potentials and challenges of the approach from both mathematical and computational perspectives. Among other things, second-order optimality conditions are established, providing new theoretical insights, and practical solution methods are proposed by exploiting the structure of the problem. Specifically, we accelerate the gradient projection method using GPU-based parallel computing to efficiently handle large-scale data. Y1 - 2026 U6 - https://doi.org/https://doi.org/10.23952/jnva.10.2026.2.8 VL - 10 IS - 2 SP - 381 EP - 401 PB - Biemdas ER - TY - JOUR A1 - Wakayama, Yuki A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用の階層的関係を考慮した最適化(時間集約によるモデル縮約とその効果) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation(Model Reduction by Time Aggregation and Its Effect) JF - エネルギー・資源学会第34回エネルギーシステム・経済・環境コンファレンス講演論文集 N2 - A hierarchical mixed-integer linear programming method to solve optimal design problems of energy supply systems efficiently has been proposed. The original problem is solved by dividing it into a relaxed optimal design problem at the upper level and optimal operation problems which are independent of each other at the lower level. In this paper, a method of reducing model by time aggregation is proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. On one hand, the method may decrease the number of design variables and costraints at the upper level, and thus the computation time at the upper level. On the other hand, it may increase the numbers of generated design solution candidates and solved optimal operation problems, and thus the computation time at both the levels. Though a case study on the optimal design of a cogeneration system, it is clarified how the model reduction is effective to enhance the computation efficiency. Y1 - 2018 SP - 401 EP - 404 ER - TY - JOUR A1 - Taniguchi, Shusuke A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Ohkura, Masashi A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用の階層的関係を考慮した最適化(多目的最適化におけるK-ベスト解の探索) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Search for K-Best Solutions in Multiobjective Optimization) JF - エネルギー・資源学会第31回エネルギーシステム・経済・環境コンファレンス講演論文集 N2 - A mixed-integer linear programming method utilizing the hierarchical relationship between design and operation variables proposed to solve the optimal design problem of energy supply systems efficiently is extended to search K-best solutions in multiobjective optimization: At the upper level, the optimal values of design variables are searched by the branch and bound method with operation variables relaxed to continuous ones; At the lower level, the values of operation variables are optimized independently at the respective periods set for variations in energy demands by the branch and bound method with the values of design variables given tentatively during the search at the upper level. A weighting method is employed for multiobjective optimization, and a weighted sum of the annual total cost and primary energy consumption is adopted as the objective function to be minimized. A practical case study on the optimal design of a cogeneration system is conducted. The validity and effectiveness of the proposed method are clarified, and the trade-off relationship between the annual total cost and primary energy consumption is confirmed. Y1 - 2015 SP - 267 EP - 272 ER - TY - JOUR A1 - Takeuchi, Kotaro A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - エネルギー供給システムの 設計と運用の階層的関係を考慮した最適化 (運用を考慮した期間クラスタリングによるモデル縮約) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Model Reduction by Clustering Periods in Consideration of Operation) JF - エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集 N2 - To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) methods have been applied widely to such multi-period optimal design problems. A hierarchical MILP method has been proposed to solve the problems very efficiently. In addition, by utilizing features of the hierarchical MILP method, a method of reducing model by clustering periods has also been proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, by utilizing features of the hierarchical MILP method, a method of clustering periods is proposed based on the optimal operational strategies of energy supply systems obtained by solving the relaxed optimal design problem. As a case study, the method is applied to the optimal design of a gas turbine cogeneration system, and it is clarified that the method is effective to enhance the computation efficiency in comparison with a conventional method of clustering periods regularly. Y1 - 2019 SP - 169 EP - 174 ER - TY - JOUR A1 - Kamada, Hiroki A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - 混合整数線形モデルによる エネルギー供給システムのロバスト最適設計 (階層的最適化手法の適用) T1 - Robust Optimal Design of Energy Supply Systems Based on a Mixed-Integer Linear Model (Application of a Hierarchical Optimization Method) JF - エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集 N2 - A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, mixed-integer linear programming method in consideration of the hierarchical relationship between design and operation variables is applied to parts of the robust optimal design method which take long computation times to solve problems efficiently. In a case study, this revised method is applied to the robust optimal design of a cogeneration system with a simple configuration, and the validity and effectiveness of the method are ascertained. Y1 - 2019 SP - 163 EP - 168 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Taniguchi, Syusuke A1 - Ohkura, Masashi A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用の階層的関係を考慮した最適化(手法の提案) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Proposal of Optimization Method) JF - 第33回エネルギー・資源学会研究発表会講演論文要旨集・講演論文集 N2 - A mixed-integer linear programming (MILP) method utilizing the hierarchical relationship between design and op- eration variables is proposed to solve the optimal design problem of energy supply systems efficiently: At the upper level, the optimal values of design variables are searched by the branch and bound method; At the lower level, the values of operation variables are optimized by the branch and bound method under the values of design variables given tentatively during the search at the upper level; Lower bounds for the optimal value of the objective function are evaluated, and are utilized for the bounding operations at both the levels. This method is implemented into open and commercial MILP solvers. Illustrative and practical case studies on the optimal design of cogeneration systems are conducted, and the validity and effectiveness of the proposed method are clarified. Y1 - 2014 SP - 183 EP - 188 ER - TY - JOUR A1 - Pedersen, Jaap A1 - Spreckelsen, Klaus A1 - Gotzes, Uwe A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Beimischung von Wasserstoff zum Erdgas: Eine Kapazitätsstudie des deutschen Gasnetzes JF - 3R – Fachzeitschrift für Rohrleitungssystem N2 - Die europäische Gasinfrastruktur wird disruptiv in ein zukünftiges dekarbonisiertes Energiesystem verändert; ein Prozess, der angesichts der jüngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, trägt zur Erhöhung der öffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Fachbeitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualität analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten genügend Kapazität bietet, um für einen großen Teil der bis 2030 geplanten Erzeugungskapazität für grünen Wasserstoff als garantierter Abnehmer zu dienen. Y1 - 2023 IS - 06/2023 SP - 70 EP - 75 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Taniguchi, Syusuke A1 - Ohkura, Masashi A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用階層的関係を考慮した最適化(K-ベスト解の探索) T1 - Optimization ofEnergy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Search for K-Best Solutions) JF - 日本機械学会第11回最適化シンポジウム2014講演論文集 N2 - A mixed-integer linear programming methodutilizing the hierarchical relationship between design and operation variables proposed ot solve the optimal design problem of energy supply systems efficiently is extended ot search K-best solutions: At the upper level, the optimal values ofdesign variables are searched with operation variables relaxed to continuous ones; At the lower level, the values of operation variables are optimized with the values of design variables given tentatively; The obtained solution is used to renew K-best incumbent solutions, and the upper bound for the value of the objective function for K-best solutions is replaced correspondingly. A practical case study is conducted, and the validity and effectiveness of the proposed method are clarified. Y1 - 2014 SP - 1 EP - 4 ER - TY - JOUR A1 - Wakayama, Yuki A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - 階層的最適化によるエネルギ ー供給システムの最適設計・運用 (期間のクラスタリングに よるモデル縮約とその効果) T1 - Optimal Design and Operation of Energy Supply Systems by Hierarchical Optimization (Model Reduction by Clustering Periods and Its Effect) JF - 日本機械学会関西支部第93期定時総会講演会講演論文集 N2 - Ahierarchical mixed-integer linear programmingmethod has been proposed to solve optimal design problems of energy supply systems efficiently. In this paper, a method of reducing model by clustering periods is proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. Through acase study on the optimaldesign of a cogeneration system, ti is clarified how the model reduction si effective ot enhance the computation efficiency. Y1 - 2018 SP - 259 EP - 260 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Takeuchi, Kotaro A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用の 階層的関係を考慮した最適化 (モデル縮約のための期間クラスタリング手法の比較) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Comparison of Time-Period Clustering Methods for Model Reduction) JF - 第38回エネルギー・資源学会研究発表会講演論文集 N2 - Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, three clustering methods are applied to time aggregation and compared with one another in terms of the computation efficiency. Especially, the k-medoids method is applied newly in addition to the time-series and operation-based methods applied previously. A case study is conducted on the optimal design of a gas turbine cogeneration system for district energy supply. Through the study, it turns out the k-medoids method is effective to shorten the computation time as compared with the time-series method, although it is necessary to set the number of clusters artifically in both the methods. It also turns out that the operation-based method is more effective than the k-medoids method in terms of the computation efficiency even with the number of clusters set automatically. Y1 - 2019 SP - 109 EP - 114 ER - TY - JOUR A1 - Takeuchi, Kotaro A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - エネルギー供給システムの 設計および運用の階層的関係を考慮した最適化 (多目的最適設計へのモデル縮約の適用) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Application of Model Reduction to Multiobjective Optimal Design) JF - エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集 N2 - To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) methods have been applied widely to such optimal design problems. A hierarchical MILP method has been proposed to solve the problems very efficiently. In addition, by utilizing features of the hierarchical MILP method, a method of reducing model by clustering periods based on the optimal operational strategies of equipment has been proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, these methods are applied to the multiobjective optimal design of a cogeneration system by considering the annual total cost and primary energy consumption as the objective functions to be minimized. Through a case study, it turns out that the model reduction by the operation-based time-period clustering is effective in terms of the computation efficiency when importance is given to the first objective function, while it is not when importance is given to the second objective function. Y1 - 2020 SP - 724 EP - 729 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用の 階層的関係を考慮した最適化 (蓄エネルギー機器を有するシステムへの適用) T1 - Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Application to Systems With Energy Storage Units) JF - 第40回エネルギー・資源学会研究発表会講演論文集 N2 - Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, the hierarchical MILP method with the strategies has been extendedly applied to the optimal design of energy supply systems with storage units. Especially, the method of re- ducing model is extended by aggregating representative days and sampling times differently in consideration of the characteristics of storage units. A case study is conducted on the optimal design of a gas turbine cogeneration system with a thermal storage unit for district energy supply. Through the study, it turns out the hierarchical MILP method is effective to derive the optimal solution as compared with a conventional method. It also turns out that the model reduction with the special time aggregation is effective to shorten the computation time as compared with that without time aggregation in case that the number of candidates for equipment capacities is relatively small. Y1 - 2021 SP - 398 EP - 403 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - 時間集約によるエネルギー供給システムの 近似最適設計解の導出および評価 (階層的最適化を援用した設計解の評価) T1 - Derivation and Evaluation of Approximate Optimal Design Solutions of Energy Supply Systems by Time Aggregation (Evaluation of Design Solutions Using Hierarchical Optimization) JF - エネルギー・資源学会第38回エネルギーシステム・経済・環境コンファレンス講演論文集 N2 - For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to solve such an optimal design problem with a large number of periods efficiently is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to provide a time aggregation method for deriving aprroximate optimal design solutions and evaluting their values of the objective function. Especially, a method of evaluating design solutions is presented here using both methods of evaluating the robustness under uncertain energy demands and solving optimal design problems by a hierarchical approach. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach. Y1 - 2022 SP - 468 EP - 473 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - 時間集約によるエネルギー供給システムの 近似最適設計解の導出および評価 (階層的最適化を援用した近似最適設計) T1 - Derivation and Evaluation of Approximate Optimal Design Solutions of Energy Supply Systems by Time Aggregation (Approximate Optimal Design Using Hierarchical Optimization) JF - 第41回エネルギー・資源学会研究発表会講演論文集 N2 - For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to efficiently solve such an optimal design problem with a large number of periods for variations in energy de- mands is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to propose a time aggregation approach for deriving suitable aprroximate optimal design solutions and evaluting their values of the objective function accurately. This time aggregation approach is realized by combining a robust optimal design method under uncertain energy demands and a hierarchical approach for solving large scale optimal design problems. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective upper and lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach. Y1 - 2022 SP - 144 EP - 148 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakayama, Yuki A1 - Wakui, Tetsuya T1 - Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method JF - Energy N2 - Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of en- ergy supply systems in consideration of multi-period operation. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. An original problem has been solved by dividing it into a relaxed optimal design problem at the upper level and optimal operation problems which are independent of one another at the lower level. In addition, some strategies have been pro- posed to enhance the computation efficiency furthermore. In this paper, a method of reducing model by time aggregation is proposed as a novel strategy to search design candidates efficiently in the relaxed optimal design problem at the upper level. In addition, the previous strategies are modified in accor- dance with the novel strategy. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. Thus, it may decrease the computation time at the upper level. Through a case study on the optimal design of a gas turbine cogeneration system, it is clarified how the model reduction is effective to enhance the computation efficiency in comparison and combination with the modified previous strategies. Y1 - 2019 VL - 181 SP - 782 EP - 792 ER - TY - JOUR A1 - Kamada, Hiroki A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - 階層的最適化手法の援用による エネルギー供給システムのロバスト最適設計 T1 - Robust Optimal Design of Energy Supply Systems With Aid of a Hierarchical Optimization Method JF - エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集 N2 - A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. Since this problem must be solved by a special algorithm and is too difficult to solve even using a commercial solver, a hierarchical optimization approach has been applied to solve the problem but its application is limited only to small scale toy problems. In this paper, some strategies are introduced into the hierarchical optimization approach to enhance the computation efficiency for the purpose of applying the approach to large scale practical problems. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained. Y1 - 2020 SP - 730 EP - 735 ER - TY - JOUR A1 - Takeuchi, Kotaro A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - エネルギー供給システムの設計および運用の階層的関係を考慮した最適化 (k-メドイド法に基づく期間クラスタリングの適用) T1 - Optimization of Energy Supply Systems in Consideration of Hierachical Relationship Between Design and Operation (Application of Time-Period Clustering Based on k-Medoids Method) JF - 日本機械学会関西支部第95期定時総会講演会講演論文集 N2 - To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. A hierarchical mixed-integer linear programming method has been proposed to solve such an optimal design problem efficiently. In this paper, a method of reducing model by clustering periods with the k-medoids method is applied to the relaxed optimal design problem at the upper level. Through a case study, it is clarified how the proposed method is effective to enhance the computation efficiency in a large scale optimal design problem. Y1 - 2020 SP - 1 EP - 4 ER - TY - JOUR A1 - Kamada, Hiroki A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - 階層的最適化手法を用いた エネルギー供給システムのロバスト性評価 T1 - Evaluating Robustness of Energy Supply Systems Using a Hierarchical Optimization Method JF - 日本機械学会関西支部第95期定時総会講演会講演論文集 N2 - A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed-integer linear model for constituent equipment. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, a hierarchical optimization method is applied to two types of optimization problems for evaluating robustness to solve them efficiently. In a case study, the proposed method is applied to a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained. Y1 - 2020 SP - 1 EP - 4 ER - TY - JOUR A1 - Pedersen, Jaap A1 - Spreckelsen, Klaus A1 - Gotzes, Uwe A1 - Zittel, Janina A1 - Koch, Thorsten T1 - Beimischung von Wasserstoff zum Erdgas: Eine Kapazitätsstudie des deutschen Gasnetzes T1 - Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid JF - gwf Gas + Energie N2 - Die europaische Gasinfrastruktur wird disruptiv in ein zukunftiges dekarbonisiertes Energiesystem verändert; ein Prozess, der angesichts der jüngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, trägt zur Erhöhung der öffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Beitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualität analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen ̈ugend Kapazität bietet, um für einen großen Teil der bis 2030 geplanten Erzeugungskapazität für grünen Wasserstoff als garantierter Abnehmer zu dienen. N2 - The European gas infrastructure is being disruptively transformed into a future decarbonised energy system; a process that needs to be accelerated given the recent political situation. With a growing hydrogen market, pipeline-based transport using the existing natural gas infrastructure becomes economically viable, helps to increase public acceptance and accelerates the transition process. In this paper, the maximum technically feasible feed-in of hydrogen into the existing German natural gas transport network is analysed with regard to regulatory limits of gas quality. Analysis is based on a transient tracking model that builds on the general pooling problem including linepack. It is shown that even with strict limits, the gas grid offers sufficient capacity to serve as a guaranteed customer for a large part of the green hydrogen generation capacity planned until 2030. Y1 - 2023 PB - Vulkan Verlag ET - 06/2023 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - Evaluation of Design Alternatives for a Gas Turbine Cogeneration Plant Based on Multiobjective K-Best Solutions JF - International Conference on Power Engineering-2019 N2 - To realize the best performance in energy supply, it is an important task to determine types, capacities, and numbers of energy conversion equipment appropriately. It is also necessary to take account of seasonal and hourly variations in energy demands and corresponding operational strategies of equipment. The mixed-integer linear programming (MILP) method has been utilized widely to derive the optimal solution for such a design problem. From the design viewpoint, it is important to generate not only the optimal solution but also suboptimal ones which follow the optimal one without omission, what are called K-best solutions. In this paper, an MILP method utilizing the hierarchical relationship between design and operation variables is applied along with some strategies to efficiently drive K-best solutions of a multiobjective optimal design problem of a gas turbine cogeneration system for district energy supply. The annual total cost and primary energy consumption are adopted as the objective functions to be minimized. A case study is conducted, and K-best solutions with an allowable increase in the value of the combined objective function are derived for each value of the weight for the annual total cost. Through the study, it is clarified how the weight affects the computation time, the number of the K-best solutions, and the design specifications and the values of the objective functions for the K-best solutions. Y1 - 2019 SP - 1112 EP - 1117 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Hiramatsu, Yuto A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - Evaluation of robustness in multiple performance criteria for designing energy supply systems based on a mixed-integer linear model JF - The 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2022) N2 - In designing energy supply systems, it is important to consider the uncertainty in energy demands, evaluate the robustness in some performance criteria, and heighten the robustness. A robust optimal design method has been previously proposed to maximize the robustness in a single performance criterion against the uncertainty in energy demands based on a mixed-integer linear model. In this paper, as a preliminary step toward multiobjective robust optimal design, a method of evaluating robustness in multiple performance criteria against the uncertainty in energy demands is proposed based on a mixed-integer linear model. The problems of evaluating the robustness in the performance criteria are formulated as bilevel mixed-integer linear programming (MILP) ones. They are solved by evaluating lower and upper bounds for the maximum regrets in the performance criteria alternately and repeatedly with the aid of a solution method based on reformulation and decomposition. In addition, for the purpose of applying the proposed method to practical problems, a hierarchical MILP method is used to efficiently solve some MILP problems in the solution process. Through a case study on a cogeneration system, the robustness in the annual total cost and primary energy consumption is evaluated and its trade-off relationship is clarified. As a result, it turns out how the values of these performance criteria are close to the optimal ones in relation to the uncertainty in energy demands. This work will be an important step toward developing a multiobjective robust optimal design method. Y1 - 2022 SP - 1937 EP - 1948 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Taniguchi, Syusuke A1 - Wakui, Tetsuya T1 - Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method JF - Energy N2 - For the purpose of making a decision in the optimal design of an energy supply system, it is important to investigate not only the optimal solution but also suboptimal ones which follow the optimal one without any omissions, what are called K-best solutions. In this paper, a mixed-integer linear programming method utilizing the hierarchical relationship between design and operation variables proposed previ- ously is extended to search the K-best solutions very efficiently. In addition, methods for updating the incumbents are incorporated into the extended method for three options for the criterion set newly in deriving the K-best solutions. This extended method is implemented into open and commercial MILP solvers, and is applied to illustrative and practical case studies, respectively, on the optimal design of cogeneration systems. Through the studies, it turns out that the proposed method is much superior in terms of solution optimality and computation efficiency to a conventional method, and that the computation efficiency to derive one of the K-best solutions by the proposed method increases with the number of K-best solutions. In addition, features of the K-best solutions in the value of objective function are clarified. Y1 - 2019 U6 - https://doi.org/https://doi.org/10.1016/j.energy.2018.02.077 VL - 184 SP - 45 EP - 57 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Hiramatsu, Yuto A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - Evaluation of robustness in multiple performance criteria for designing energy supply systems based on a mixed-integer linear model JF - Proceedings of the 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2022) N2 - In designing energy supply systems, it is important to consider the uncertainty in energy demands, evaluate the robustness in some performance criteria, and heighten the robustness. A robust optimal design method has been previously proposed to maximize the robustness in a single performance criterion against the uncertainty in energy demands based on a mixed-integer linear model. In this paper, as a preliminary step toward multiobjective robust optimal design, a method of evaluating robustness in multiple performance criteria against the uncertainty in energy demands is proposed based on a mixed-integer linear model. The problems of evaluating the robustness in the performance criteria are formulated as bilevel mixed-integer linear programming (MILP) ones. They are solved by evaluating lower and upper bounds for the maximum regrets in the performance criteria alternately and repeatedly with the aid of a solution method based on reformulation and decomposition. In addition, for the purpose of applying the proposed method to practical problems, a hierarchical MILP method is used to efficiently solve some MILP problems in the solution process. Through a case study on a cogeneration system, the robustness in the annual total cost and primary energy consumption is evaluated and its trade-off relationship is clarified. Y1 - 2022 SP - 1937 EP - 1948 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Shinano, Yuji A1 - Takeuchi, Kotaro A1 - Wakui, Tetsuya T1 - Operation-based time-period clustering for optimal design of energy supply systems by a hierarchical MILP method JF - THE 32ND INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS(ECOS 2019) N2 - Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, a method of clustering periods has been proposed based on the optimal operational strategies of the systems to avoid a large decrease in the lower bound for the optimal value of the objective function by model reduction. This method has been realized only by solving the relaxed optimal design problem at the upper level in advance. The method can decrease the number of operation variables and constraints at the upper level, and thus can decrease the computation time at the upper level. Through a case study on the optimal design of a gas turbine cogeneration system, it is clarified how the proposed clustering method is effective to enhance the computation efficiency in comparison with the conventional one which clusters periods regularly in time series. Y1 - 2019 SP - 527 EP - 539 ER -