TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - An as-invariant-as-possible GL+(3)-based Statistical Shape Model T2 - Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA) N2 - We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-33226-6_23 VL - 11846 SP - 219 EP - 228 PB - Springer ER - TY - GEN A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - A Surface-Theoretic Approach for Statistical Shape Modeling N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability. T3 - ZIB-Report - 19-20 KW - Statistical shape analysis KW - Principal geodesic analysis KW - Lie groups KW - Classification KW - Manifold valued statistics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74497 SN - 1438-0064 ER - TY - GEN A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - An as-invariant-as-possible GL+(3)-based Statistical Shape Model N2 - We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling. T3 - ZIB-Report - 19-46 KW - Statistical shape analysis KW - Tangent principal component analysis KW - Lie groups KW - Classification KW - Manifold valued statistics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74566 SN - 1438-0064 ER - TY - JOUR A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Rigid Motion Invariant Statistical Shape Modeling based on Discrete Fundamental Forms JF - Medical Image Analysis N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102178 VL - 73 ER - TY - GEN A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Geodesic B-Score for Improved Assessment of Knee Osteoarthritis N2 - Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions. T3 - ZIB-Report - 21-09 KW - Statistical shape analysis KW - Osteoarthritis KW - Geometric statistics KW - Riemannian manifolds Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81930 SN - 1438-0064 ER - TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - Geodesic B-Score for Improved Assessment of Knee Osteoarthritis T2 - Proc. Information Processing in Medical Imaging (IPMI) N2 - Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions. Y1 - 2021 U6 - https://doi.org/10.1007/978-3-030-78191-0_14 SP - 177 EP - 188 ER - TY - GEN A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. T3 - ZIB-Report - 19-13 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72699 SN - 1438-0064 ER - TY - CHAP A1 - Ambellan, Felix A1 - Zachow, Stefan A1 - von Tycowicz, Christoph T1 - A Surface-Theoretic Approach for Statistical Shape Modeling T2 - Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part IV N2 - We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-32251-9_3 VL - 11767 SP - 21 EP - 29 PB - Springer ER - TY - CHAP A1 - Ambellan, Felix A1 - Lamecker, Hans A1 - von Tycowicz, Christoph A1 - Zachow, Stefan ED - Rea, Paul M. T1 - Statistical Shape Models - Understanding and Mastering Variation in Anatomy T2 - Biomedical Visualisation N2 - In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring. Y1 - 2019 SN - 978-3-030-19384-3 SN - 978-3-030-19385-0 U6 - https://doi.org/10.1007/978-3-030-19385-0_5 VL - 3 IS - 1156 SP - 67 EP - 84 PB - Springer Nature Switzerland AG ET - 1 ER - TY - GEN A1 - Ambellan, Felix A1 - Hanik, Martin A1 - von Tycowicz, Christoph T1 - Morphomatics: Geometric morphometrics in non-Euclidean shape spaces N2 - Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates. KW - shape analysis KW - geometric statistics KW - geometric morphometrics Y1 - 2021 U6 - https://doi.org/10.12752/8544 N1 - https://morphomatics.github.io/ ER - TY - CHAP A1 - Lüdke, David A1 - Amiranashvili, Tamaz A1 - Ambellan, Felix A1 - Ezhov, Ivan A1 - Menze, Bjoern A1 - Zachow, Stefan T1 - Landmark-free Statistical Shape Modeling via Neural Flow Deformations T2 - Medical Image Computing and Computer Assisted Intervention - MICCAI 2022 N2 - Statistical shape modeling aims at capturing shape variations of an anatomical structure that occur within a given population. Shape models are employed in many tasks, such as shape reconstruction and image segmentation, but also shape generation and classification. Existing shape priors either require dense correspondence between training examples or lack robustness and topological guarantees. We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances. It relies on a hierarchy of continuous deformation flows, which are parametrized by a neural network. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver. We show that the emerging latent representation is discriminative by separating healthy from pathological shapes. Ultimately, we demonstrate its effectiveness on two shape reconstruction tasks from partial data. Our source code is publicly available (https://github.com/davecasp/flowssm). Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-16434-7_44 VL - 13432 PB - Springer, Cham ER - TY - JOUR A1 - Sekuboyina, Anjany A1 - Husseini, Malek E. A1 - Bayat, Amirhossein A1 - Löffler, Maximilian A1 - Liebl, Hans A1 - Li, Hongwei A1 - Tetteh, Giles A1 - Kukačka, Jan A1 - Payer, Christian A1 - Štern, Darko A1 - Urschler, Martin A1 - Chen, Maodong A1 - Cheng, Dalong A1 - Lessmann, Nikolas A1 - Hu, Yujin A1 - Wang, Tianfu A1 - Yang, Dong A1 - Xu, Daguang A1 - Ambellan, Felix A1 - Amiranashvili, Tamaz A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Lehnert, Sebastian A1 - Lirio, Marilia A1 - de Olaguer, Nicolás Pérez A1 - Ramm, Heiko A1 - Sahu, Manish A1 - Tack, Alexander A1 - Zachow, Stefan A1 - Jiang, Tao A1 - Ma, Xinjun A1 - Angerman, Christoph A1 - Wang, Xin A1 - Brown, Kevin A1 - Kirszenberg, Alexandre A1 - Puybareau, Élodie A1 - Chen, Di A1 - Bai, Yiwei A1 - Rapazzo, Brandon H. A1 - Yeah, Timyoas A1 - Zhang, Amber A1 - Xu, Shangliang A1 - Hou, Feng A1 - He, Zhiqiang A1 - Zeng, Chan A1 - Xiangshang, Zheng A1 - Liming, Xu A1 - Netherton, Tucker J. A1 - Mumme, Raymond P. A1 - Court, Laurence E. A1 - Huang, Zixun A1 - He, Chenhang A1 - Wang, Li-Wen A1 - Ling, Sai Ho A1 - Huynh, Lê Duy A1 - Boutry, Nicolas A1 - Jakubicek, Roman A1 - Chmelik, Jiri A1 - Mulay, Supriti A1 - Sivaprakasam, Mohanasankar A1 - Paetzold, Johannes C. A1 - Shit, Suprosanna A1 - Ezhov, Ivan A1 - Wiestler, Benedikt A1 - Glocker, Ben A1 - Valentinitsch, Alexander A1 - Rempfler, Markus A1 - Menze, Björn H. A1 - Kirschke, Jan S. T1 - VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images JF - Medical Image Analysis N2 - Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse. Y1 - 2021 U6 - https://doi.org/10.1016/j.media.2021.102166 VL - 73 ER - TY - THES A1 - Ambellan, Felix T1 - Efficient Riemannian Statistical Shape Analysis with Applications in Disease Assessment N2 - In this work, we address the challenge of developing statistical shape models that account for the non-Euclidean nature inherent to (anatomical) shape variation and at the same time offer fast, numerically robust processing and as much invariance as possible regarding translation and rotation, i.e. Euclidean motion. With the aim of doing that we formulate a continuous and physically motivated notion of shape space based on deformation gradients. We follow two different tracks endowing this differential representation with a Riemannian structure to establish a statistical shape model. (1) We derive a model based on differential coordinates as elements in GL(3)+. To this end, we adapt the notion of bi-invariant means employing an affine connection structure on GL(3)+. Furthermore, we perform second-order statistics based on a family of Riemannian metrics providing the most possible invariance, viz. GL(3)+-left-invariance and O(3)-right-invariance. (2) We endow the differential coordinates with a non-Euclidean structure, that stems from a product Lie group of stretches and rotations. This structure admits a bi-invariant metric and thus allows for a consistent analysis via manifold-valued Riemannian statistics. This work further presents a novel shape representation based on discrete fundamental forms that is naturally invariant under Euclidean motion, namely the fundamental coordinates. We endow this representation with a Lie group structure that admits bi-invariant metrics and therefore allows for consistent analysis using manifold-valued statistics based on the Riemannian framework. Furthermore, we derive a simple, efficient, robust, yet accurate (i.e. without resorting to model approximations) solver for the inverse problem that allows for interactive applications. Beyond statistical shape modeling the proposed framework is amenable for surface processing such as quasi-isometric flattening. Additionally, the last part of the thesis aims on shape-based, continuous disease stratification to provide means that objectify disease assessment over the current clinical practice of ordinal grading systems. Therefore, we derive the geodesic B-score, a generalization of the of the Euclidean B-score, in order to assess knee osteoarthritis. In this context we present a Newton-type fixed point iteration for projection onto geodesics in shape space. On the application side, we show that the derived geodesic B-score features, in comparison to its Euclidean counterpart, an improved predictive performance on assessing the risk of total knee replacement surgery. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-refubium-37016-3 ER - TY - JOUR A1 - Sekuboyina, Anjany A1 - Bayat, Amirhossein A1 - Husseini, Malek E. A1 - Löffler, Maximilian A1 - Li, Hongwei A1 - Tetteh, Giles A1 - Kukačka, Jan A1 - Payer, Christian A1 - Štern, Darko A1 - Urschler, Martin A1 - Chen, Maodong A1 - Cheng, Dalong A1 - Lessmann, Nikolas A1 - Hu, Yujin A1 - Wang, Tianfu A1 - Yang, Dong A1 - Xu, Daguang A1 - Ambellan, Felix A1 - Amiranashvili, Tamaz A1 - Ehlke, Moritz A1 - Lamecker, Hans A1 - Lehnert, Sebastian A1 - Lirio, Marilia A1 - de Olaguer, Nicolás Pérez A1 - Ramm, Heiko A1 - Sahu, Manish A1 - Tack, Alexander A1 - Zachow, Stefan A1 - Jiang, Tao A1 - Ma, Xinjun A1 - Angerman, Christoph A1 - Wang, Xin A1 - Wei, Qingyue A1 - Brown, Kevin A1 - Wolf, Matthias A1 - Kirszenberg, Alexandre A1 - Puybareau, Élodie A1 - Valentinitsch, Alexander A1 - Rempfler, Markus A1 - Menze, Björn H. A1 - Kirschke, Jan S. T1 - VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images JF - arXiv Y1 - 2020 ER -