TY - CHAP A1 - Hoppmann, Kai A1 - Schwarz, Robert T1 - Finding Maximum Minimum Cost Flows to Evaluate Gas Network Capacities T2 - Operations Research Proceedings 2017 N2 - In this article we consider the following problem arising in the context of scenario generation to evaluate the transport capacity of gas networks: In the Uncapacitated Maximum Minimum Cost Flow Problem (UMMCF) we are given a flow network where each arc has an associated nonnegative length and infinite capacity. Additionally, for each source and each sink a lower and an upper bound on its supply and demand are known, respectively. The goal is to find values for the supplies and demands respecting these bounds, such that the optimal value of the induced Minimum Cost Flow Problem is maximized, i.e., to determine a scenario with maximum transportmoment. In this article we propose two linear bilevel optimization models for UMMCF, introduce a greedy-style heuristic, and report on our first computational experiment. Y1 - 2018 SN - 978-3-319-89919-0 U6 - https://doi.org/10.1007/978-3-319-89920-6_46 SP - 339 EP - 346 ER - TY - JOUR A1 - Serrano, Felipe A1 - Schwarz, Robert A1 - Gleixner, Ambros T1 - On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm JF - Journal of Global Optimization N2 - Recently, Kronqvist et al. (J Global Optim 64(2):249–272, 2016) rediscovered the supporting hyperplane algorithm of Veinott (Oper Res 15(1):147–152, 1967) and demonstrated its computational benefits for solving convex mixed integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm (J Soc Ind Appl Math 8(4):703–712, 1960) applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by a class of general, not necessarily convex nor differentiable, functions. Y1 - 2020 U6 - https://doi.org/10.1007/s10898-020-00906-y VL - 78 SP - 161 EP - 179 ER - TY - GEN A1 - Serrano, Felipe A1 - Schwarz, Robert A1 - Gleixner, Ambros T1 - On the Relation between the Extended Supporting Hyperplane Algorithm and Kelley’s Cutting Plane Algorithm N2 - Recently, Kronqvist et al. (2016) rediscovered the supporting hyperplane algorithm of Veinott (1967) and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley's cutting plane algorithm applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by general, not necessarily convex, differentiable functions that satisfy a mild condition. T3 - ZIB-Report - 19-18 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73253 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation N2 - In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now transported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements. T3 - ZIB-Report - 18-11 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-67438 SN - 1438-0064 N1 - An earlier version of this report is available as ZR 17-03 at https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6193. ER - TY - JOUR A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation JF - European Journal of Operational Research N2 - In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now trans- ported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements. Y1 - 2018 VL - 270 IS - 3 SP - 797 EP - 808 ER - TY - CHAP A1 - Schwarz, R. A1 - Lacalandra, F. A1 - Schewe, L. A1 - Bettinelli, A. A1 - Vigo, D. A1 - Bischi, A. A1 - Parriani, T. A1 - Martelli, E. A1 - Vuik, K. A1 - Lenz, R. A1 - Madsen, H. A1 - Blanco, I. A1 - Guericke, D. A1 - Yüksel-Ergün, I. A1 - Zittel, J. T1 - Network and Storage T2 - Mathematical Optimization for Efficient and Robust Energy Networks N2 - Natural gas is considered by many to be the most important energy source for the future. The objectives of energy commodities strategic problems can be mainly related to natural gas and deal with the definition of the “optimal” gas pipelines design which includes a number of related sub problems such as: Gas stations (compression) location and Gas storage locations, as well as compression station design and optimal operation. Y1 - 2020 SN - 978-3-030-57442-0 U6 - https://doi.org/https://doi.org/10.1007/978-3-030-57442-0_6 VL - 4 PB - Springer ER -