TY - GEN A1 - Borndörfer, Ralf A1 - Grimm, Boris A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - Optimization of Handouts for Rolling Stock Rotations Visualization N2 - A railway operator creates (rolling stock) rotations in order to have a precise master plan for the operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply traverses a set of operational days while covering trips of the timetable. As it is well known, the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging and still a topical research subject. Nevertheless, we study a completely different but strongly related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In our industrial application at DB Fernverkehr AG, the handout is exactly as important as the rotation itself. Moreover, it turns out that also other European railway operators use exactly the same methodology (but not terminology). Since a rotation can have many handouts of different quality, we show how to compute optimal ones through an integer program (IP) by standard software. In addition, a construction as well as an improvement heuristic are presented. Our computational results show that the heuristics are a very reliable standalone approach to quickly find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a computational comparison to the IP approach. T3 - ZIB-Report - ZR-16-73 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61430 SN - 1438-0064 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Grimm, Boris A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - Optimization of handouts for rolling stock rotations JF - Journal of Rail Transport Planning & Management N2 - A railway operator creates (rolling stock) rotations in order to have a precise master plan for the operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply traverses a set of operational days while covering trips of the timetable. As it is well known, the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging and still a topical research subject. Nevertheless, we study a completely different but strongly related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In our industrial application at DB Fernverkehr AG, the handout is exactly as important as the rotation itself. Moreover, it turns out that also other European railway operators use exactly the same methodology (but not terminology). Since a rotation can have many handouts of different quality, we show how to compute optimal ones through an integer program (IP) by standard software. In addition, a construction as well as an improvement heuristic are presented. Our computational results show that the heuristics are a very reliable standalone approach to quickly find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a computational comparison to the IP approach. Y1 - 2019 U6 - https://doi.org/10.1016/j.jrtpm.2019.02.001 IS - 10 SP - 1 EP - 8 ER - TY - CHAP A1 - Berthold, Timo A1 - Grimm, Boris A1 - Reuther, Markus A1 - Schade, Stanley A1 - Schlechte, Thomas T1 - Strategic Planning of Rolling Stock Rotations for Public Tenders T2 - Proceedings of the 8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 N2 - Since railway companies have to apply for long-term public contracts to operate railway lines in public tenders, the question how they can estimate the operating cost for long-term periods adequately arises naturally. We consider a rolling stock rotation problem for a time period of ten years, which is based on a real world instance provided by an industry partner. We use a two stage approach for the cost estimation of the required rolling stock. In the first stage, we determine a weekly rotation plan. In the second stage, we roll out this weekly rotation plan for a longer time period and incorporate scheduled maintenance treatments. We present a heuristic approach and a mixed integer programming model to implement the process of the second stage. Finally, we discuss computational results for a real world tendering scenario. Y1 - 2019 UR - http://www.ep.liu.se/ecp/article.asp?issue=069&article=009&volume= SN - 978-91-7929-992-7 SN - 1650-3686 VL - Linköping Electronic Conference Proceedings IS - 069 SP - 148 EP - 159 PB - Linköping University Electronic Press, Linköpings universitet ER - TY - BOOK A1 - Abbink, Erwin A1 - Bärmann, Andreas A1 - Bešinovic, Nikola A1 - Bohlin, Markus A1 - Cacchiani, Valentina A1 - Caimi, Gabrio A1 - de Fabris, Stefano A1 - Dollevoet, Twan A1 - Fischer, Frank A1 - Fügenschuh, Armin A1 - Galli, Laura A1 - Goverde, Rob M.P. A1 - Hansmann, Ronny A1 - Homfeld, Henning A1 - Huisman, Dennis A1 - Johann, Marc A1 - Klug, Torsten A1 - Törnquist Krasemann, Johanna A1 - Kroon, Leo A1 - Lamorgese, Leonardo A1 - Liers, Frauke A1 - Mannino, Carlo A1 - Medeossi, Giorgio A1 - Pacciarelli, Dario A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Schmidt, Marie A1 - Schöbel, Anita A1 - Schülldorf, Hanno A1 - Stieber, Anke A1 - Stiller, Sebastian A1 - Toth, Paolo A1 - Zimmermann, Uwe ED - Borndörfer, Ralf ED - Klug, Torsten ED - Lamorgese, Leonardo ED - Mannino, Carlo ED - Reuther, Markus ED - Schlechte, Thomas T1 - Handbook of Optimization in the Railway Industry N2 - This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art. There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover: Simulation Capacity Assessment Network Design Train Routing Robust Timetabling Event Scheduling Track Allocation Blocking Shunting Rolling Stock Crew Scheduling Dispatching Delay Propagation Y1 - 2018 SN - 978-3-319-72152-1 U6 - https://doi.org/10.1007/978-3-319-72153-8 VL - 268 PB - Springer Verlag ER - TY - GEN A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - A Hypergraph Model for Railway Vehicle Rotation Planning N2 - We propose a model for the integrated optimization of vehicle rotations and vehicle compositions in long distance railway passenger transport. The main contribution of the paper is a hypergraph model that is able to handle the challenging technical requirements as well as very general stipulations with respect to the ``regularity'' of a schedule. The hypergraph model directly generalizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the model is computationally well-behaved in practice. High quality solutions can be produced in reasonable time using high performance Integer Programming techniques, in particular, column generation and rapid branching. We show that, in this way, large-scale real world instances of our cooperation partner DB Fernverkehr can be solved. T3 - ZIB-Report - 11-36 KW - Rolling Stock Planning, Hypergraph Modeling, Integer Programming, Column Generation, Rapid Branching Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0030-drops-32746 SN - 1438-0064 ER - TY - GEN A1 - Grimm, Boris A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - A Cut Separation Approach for the Rolling Stock Rotation Problem with Vehicle Maintenance T2 - 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019) N2 - For providing railway services the company’s railway rolling stock is one if not the most important ingredient. It decides about the number of passenger or cargo trips the company can offer, about the quality a passenger experiences the train ride and it is often related to the image of the company itself. Thus, it is highly desired to have the available rolling stock in the best shape possible. Moreover, in many countries, as Germany where our industrial partner DB Fernverkehr AG (DBF) is located, laws enforce regular vehicle inspections to ensure the safety of the passengers. This leads to rolling stock optimization problems with complex rules for vehicle maintenance. This problem is well studied in the literature for example see Maroti and Kroon 2005, or Cordeau et. al. 2001 for applications including vehicle maintenance. The contribution of this paper is a new algorithmic approach to solve the Rolling Stock Rotation Problem for the ICE high speed train fleet of DBF with included vehicle maintenance. It is based on a relaxation of a mixed integer linear programming model with an iterative cut generation to enforce the feasibility of a solution of the relaxation in the solution space of the original problem. The resulting mixed integer linear programming model is based on a hypergraph approach presented in Borndörfer et. al. 2015. The new approach is tested on real world instances modeling different scenarios for the ICE high speed train network in Germany and compared to the approaches of Reuther 2017 that are in operation at DB Fernverkehr AG. The approach shows a significant reduction of the run time to produce solutions with comparable or even better objective function values. T3 - ZIB-Report - 19-61 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75501 SN - 1438-0064 ER - TY - CHAP A1 - Grimm, Boris A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas ED - Cacchiani, Valentina ED - Marchetti-Spaccamela, Alberto T1 - A Cut Separation Approach for the Rolling Stock Rotation Problem with Vehicle Maintenance T2 - 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019) N2 - For providing railway services the company's railway rolling stock is one if not the most important ingredient. It decides about the number of passenger or cargo trips the company can offer, about the quality a passenger experiences the train ride and it is often related to the image of the company itself. Thus, it is highly desired to have the available rolling stock in the best shape possible. Moreover, in many countries, as Germany where our industrial partner DB Fernverkehr AG (DBF) is located, laws enforce regular vehicle inspections to ensure the safety of the passengers. This leads to rolling stock optimization problems with complex rules for vehicle maintenance. This problem is well studied in the literature for example see [Maróti and Kroon, 2005; Gábor Maróti and Leo G. Kroon, 2007], or [Cordeau et al., 2001] for applications including vehicle maintenance. The contribution of this paper is a new algorithmic approach to solve the Rolling Stock Rotation Problem for the ICE high speed train fleet of DBF with included vehicle maintenance. It is based on a relaxation of a mixed integer linear programming model with an iterative cut generation to enforce the feasibility of a solution of the relaxation in the solution space of the original problem. The resulting mixed integer linear programming model is based on a hypergraph approach presented in [Ralf Borndörfer et al., 2015]. The new approach is tested on real world instances modeling different scenarios for the ICE high speed train network in Germany and compared to the approaches of [Reuther, 2017] that are in operation at DB Fernverkehr AG. The approach shows a significant reduction of the run time to produce solutions with comparable or even better objective function values. Y1 - 2019 UR - https://drops.dagstuhl.de/opus/volltexte/2019/11413/ U6 - https://doi.org/10.4230/OASIcs.ATMOS.2019.1 VL - 75 SP - 1:1 EP - 1:12 PB - Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik CY - Dagstuhl, Germany ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Mehrgahrdt, Julika A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - The Cycle Embedding Problem T2 - Operations Research Proceedings 2014 N2 - Given two hypergraphs, representing a fine and a coarse "layer", and a cycle cover of the nodes of the coarse layer, the cycle embedding problem (CEP) asks for an embedding of the coarse cycles into the fine layer. The CEP is NP-hard for general hypergraphs, but it can be solved in polynomial time for graphs. We propose an integer rogramming formulation for the CEP that provides a complete escription of the CEP polytope for the graphical case. The CEP comes up in railway vehicle rotation scheduling. We present computational results for problem instances of DB Fernverkehr AG that justify a sequential coarse-first-fine-second planning approach. Y1 - 2016 U6 - https://doi.org/10.1007/978-3-319-28697-6_65 SP - 465 EP - 472 ER - TY - THES A1 - Reuther, Markus T1 - Mathematical Optimization of Rolling Stock Rotations N2 - We show how to optimize rolling stock rotations that are required for the operation of a passenger timetable. The underlying mathematical ptimization problem is called rolling stock rotation problem (RSRP) and the leitmotiv of the thesis is RotOR, i.e., a highly integrated optimization algorithm for the RSRP. RotOR is used by DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for the European high-speed network. In this application, RSRPs have to be solved which (A) require many different aspects to be simultaneously considered, (B) are typically of large scale, and (C) include constraints that have a difficult combinatorial structure. This thesis suggests answers to these issues via the following concepts. (A) The main model, which RotOR uses, relies on a hypergraph. The hypergraph provides an easy way to model manifold industrial railway requirements in great detail. This includes well known vehicle composition requirements as well as relatively unexplored regularity stipulations. At the same time, the hypergraph directly leads to a mixed-integer programming (MIP) model for the RSRP. (B) The main algorithmic ingredient to solve industrial instances of the RSRP is a coarse-to-fine (C2F) column generation procedure. In this approach, the hypergraph is layered into coarse and fine layers that distinguish different levels of detail of the RSRP. The coarse layers are algorithmically utilized while pricing fine columns until proven optimality. Initially, the C2F approach is presented in terms of pure linear programming in order to provide an interface for other applications. (C) Rolling stock rotations have to comply to resource constraints in order to ensure, e.g., enough maintenance inspections along the rotations. These constraints are computationally hard, but are well known in the literature on the vehicle routing problem (VRP). We define an interface problem in order to bridge between the RSRP and the VRP and derive a straightforward algorithmic concept, namely regional search (RS), from their common features and, moreover, differences. Our RS algorithms show promising results for classical VRPs and RSRPs. In the first part of the thesis we present these concepts, which encompass its main mathematical contribution. The second part explains all modeling and solving components of RotOR that turn out to be essential in its industrial application. The thesis concludes with a solution to a complex re-optimization RSRP that RotOR has computed successfully for DBF. In this application all ICE vehicles of the ICE-W fleets of DBF had to be redirected past a construction site on a high-speed line in the heart of Germany. Y1 - 2017 UR - https://depositonce.tu-berlin.de/handle/11303/6309 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Breuer, Matthias A1 - Grimm, Boris A1 - Reuther, Markus A1 - Schade, Stanley A1 - Schlechte, Thomas T1 - Timetable Sparsification by Rolling Stock Rotation Optimization T2 - Operations Research 2017 N2 - Rolling stock optimization is a task that naturally arises by operating a railway system. It could be seen with different level of details. From a strategic perspective to have a rough plan which types of fleets to be bought to a more operational perspective to decide which coaches have to be maintained first. This paper presents a new approach to deal with rolling stock optimisation in case of a (long term) strike. Instead of constructing a completely new timetable for the strike period, we propose a mixed integer programming model that is able to choose appropriate trips from a given timetable to construct efficient tours of railway vehicles covering an optimized subset of trips, in terms of deadhead kilometers and importance of the trips. The decision which trip is preferred over the other is made by a simple evaluation method that is deduced from the network and trip defining data. Y1 - 2018 U6 - https://doi.org/10.1007/978-3-319-89920-6_96 SP - 723 EP - 728 PB - Springer International Publishing ER - TY - GEN A1 - Reuther, Markus A1 - Borndörfer, Ralf A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - Integrated Optimization of Rolling Stock Rotations for Intercity Railways N2 - This paper provides a highly integrated solution approach for rolling stock planning problems in the context of intercity passenger traffic. The main contributions are a generic hypergraph based mixed integer programming model and an integrated algorithm for the considered rolling stock rotation planning problem. The new developed approach is able to handle a very large set of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacity, and regularity aspects. By the integration of this large bundle of technical railway aspects, we show that our approach has the power to produce implementable rolling stock rotations for our industrial cooperation partner DB Fernverkehr. This is the first time that the rolling stock rotations at DB Fernverkehr could be optimized by an automated system utilizing advanced mathematical programming techniques. T3 - ZIB-Report - 12-39 KW - Mixed Integer Programming KW - Railway Optimization KW - Rolling Stock Rostering Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16424 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Denißen, Jonas A1 - Heller, Simon A1 - Klug, Torsten A1 - Küpper, Michael A1 - Lindner, Niels A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Söhlke, Andreas A1 - Steadman, William T1 - Microscopic Timetable Optimization for a Moving Block System N2 - We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality. T3 - ZIB-Report - 21-13 KW - Moving Block KW - Railway Track Allocation KW - Railway Timetabling KW - Train Routing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82547 SN - 1438-0064 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Weider, Steffen ED - Muñoz, J. C. ED - Voß, S. T1 - Vehicle Rotation Planning for Intercity Railways JF - Proceedings of Conference on Advanced Systems for Public Transport 2012 (CASPT12) N2 - This paper provides a generic formulation for rolling stock planning problems in the context of intercity passenger traffic. The main contributions are a graph theoretical model and a Mixed-Integer-Programming formulation that integrate all main requirements of the considered Vehicle-Rotation-Planning problem (VRPP). We show that it is possible to solve this model for real-world instances provided by our industrial partner DB Fernverkehr AG using modern algorithms and computers. Y1 - 2012 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Löbel, Andreas A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Weider, Steffen ED - Muñoz, J. C. ED - Voß, S. T1 - Rapid Branching JF - Public Transport N2 - We propose rapid branching (RB) as a general branch-and-bound heuristic for solving large scale optimization problems in traffic and transport. The key idea is to combine a special branching rule and a greedy node selection strategy in order to produce solutions of controlled quality rapidly and efficiently. We report on three successful applications of the method for integrated vehicle and crew scheduling, railway track allocation, and railway vehicle rotation planning. Y1 - 2013 VL - 5 IS - 1 SP - 3 EP - 23 PB - Springer Berlin Heidelberg ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - A Hypergraph Model for Railway Vehicle Rotation Planning JF - 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems N2 - We propose a model for the integrated optimization of vehicle rotations and vehicle compositions in long distance railway passenger transport. The main contribution of the paper is a hypergraph model that is able to handle the challenging technical requirements as well as very general stipulations with respect to the ``regularity'' of a schedule. The hypergraph model directly generalizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the model is computationally well-behaved in practice. High quality solutions can be produced in reasonable time using high performance Integer Programming techniques, in particular, column generation and rapid branching. We show that, in this way, large-scale real world instances of our cooperation partner DB Fernverkehr can be solved. Y1 - 2011 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2011.146 VL - OpenAccess Series in Informatics (OASIcs) IS - 20 SP - 146 EP - 155 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Mehrgardt, Julika A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Waas, Kerstin T1 - Re-optimization of Rolling Stock Rotations N2 - The Rolling Stock Rotation Problem is to schedule rail vehicles in order to cover timetabled trips by a cost optimal set of vehicle rotations. The problem integrates several facets of railway optimization, i.e., vehicle composition, maintenance constraints, and regularity aspects. In industrial applications existing schedules often have to be re-optimized to integrate timetable changes or construction sites. We present an integrated modeling and algorithmic approach for this task as well as computational results for industrial problem instances of DB Fernverkehr AG. T3 - ZIB-Report - 13-60 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42569 SN - 1438-0064 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Grimm, Boris A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - Template based re-optimization of rolling stock rotations T2 - Proceedings of Conference on Advanced Systems in Public Transport 2015 (CASPT2015) N2 - Rolling stock, i.e., rail vehicles, are among the most expensive and limited assets of a railway company. They must be used efficiently applying optimization techniques. One important aspect is re-optimization, which is the topic that we consider in this paper. We propose a template concept that allows to compute cost minimal rolling stock rotations under a large variety of re-optimization requirements. Two examples, involving a connection template and a rotation template, are discussed. An implementation within the rolling stock rotation optimizer rotor and computational results for scenarios provided by DB Fernverkehr AG, one of the leading railway operators in Europe, are presented. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57539 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Reuther, Markus T1 - Regional Search for the Resource Constrained Assignment Problem T2 - 15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2015) N2 - The resource constrained assignment problem (RCAP) is to find a minimal cost partition of the nodes of a directed graph into cycles such that a resource constraint is fulfilled. The RCAP has its roots in rolling stock rotation optimization where a railway timetable has to be covered by rotations, i.e., cycles. In that context, the resource constraint corresponds to maintenance constraints for rail vehicles. Moreover, the RCAP generalizes variants of the vehicle routing problem (VRP). The paper contributes an exact branch and bound algorithm for the RCAP and, primarily, a straightforward algorithmic concept that we call regional search (RS). As a symbiosis of a local and a global search algorithm, the result of an RS is a local optimum for a combinatorial optimization problem. In addition, the local optimum must be globally optimal as well if an instance of a problem relaxation is computed. In order to present the idea for a standardized setup we introduce an RS for binary programs. But the proper contribution of the paper is an RS that turns the Hungarian method into a powerful heuristic for the resource constrained assignment problem by utilizing the exact branch and bound. We present computational results for RCAP instances from an industrial cooperation with Deutsche Bahn Fernverkehr AG as well as for VRP instances from the literature. The results show that our RS provides a solution quality of 1.4 % average gap w.r.t. the best known solutions of a large test set. In addition, our branch and bound algorithm can solve many RCAP instances to proven optimality, e.g., almost all asymmetric traveling salesman and capacitated vehicle routing problems that we consider. Y1 - 2015 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2015.111 VL - 48 SP - 111 EP - 129 ER - TY - CHAP A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - Optimization of Rolling Stock Rotations T2 - Handbook of Optimization in the Railway Industry N2 - This chapter shows a successful approach how to model and optimize rolling stock rotations that are required for the operation of a passenger timetable. The underlying mathematical optimization problem is described in detail and solved by RotOR, i.e., a complex optimization algorithm based on linear programming and combinatorial methods. RotOR is used by DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for the European high-speed network. We focus on main modeling and solving components, i.e. a hypergraph model and a coarse-to-fine column generation approach. Finally, the chapter concludes with a complex industrial re-optimization application showing the effectiveness of the approach for real world challenges. Y1 - 2018 SN - 978-3-319-72152-1 U6 - https://doi.org/https://doi.org/10.1007/978-3-319-72153-8 VL - 268 SP - 213 EP - 241 PB - Springer International Publishing ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Klug, Torsten A1 - Lamorgese, Leonardo A1 - Mannino, Carlo A1 - Reuther, Markus A1 - Schlechte, Thomas T1 - Recent success stories on integrated optimization of railway systems JF - Transportation Research Part C: Emerging Technologies N2 - Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Borndörfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry. Y1 - 2017 U6 - https://doi.org/10.1016/j.trc.2016.11.015 VL - 74 IS - 1 SP - 196 EP - 211 ER -