TY - GEN A1 - Kostré, Margarita A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Djurdjevac Conrad, Nataša T1 - Understanding the Romanization Spreading on Historical Interregional Networks in Northern Tunisia N2 - Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times. T3 - ZIB-Report - 22-10 KW - mesoscale spreading process, network inference, time-evolving network, romanization spreading, scarce data Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-86764 SN - 1438-0064 ER - TY - JOUR A1 - Kostré, Margarita A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Djurdjevac Conrad, Natasa T1 - Understanding the Romanization Spreading on Historical Interregional Networks in Northern Tunisia JF - Applied Network Science N2 - Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times. KW - mesoscale spreading process KW - network inference KW - time-evolving network KW - romanization spreading KW - scarce data Y1 - 2022 U6 - https://doi.org/10.1007/s41109-022-00492-w VL - 7 PB - Springer Nature ER - TY - JOUR A1 - Ray, Sourav A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Weber, Marcus T1 - How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs JF - Molecular Simulation N2 - Molecular simulations of ligand–receptor interactions are a computational challenge, especially when their association- (‘on’-rate) and dissociation- (‘off’-rate) mechanisms are working on vastly differing timescales. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenyl propionamide (NFEPP) in a μ-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab. Y1 - 2020 U6 - https://doi.org/10.1080/08927022.2020.1839660 VL - 46 IS - 18 SP - 1443 EP - 1452 PB - Taylor and Francis ER - TY - GEN A1 - Ray, Sourav A1 - Thies, Arne A1 - Sunkara, Vikram A1 - Wulkow, Hanna A1 - Celik, Özgür A1 - Yergöz, Fatih A1 - Schütte, Christof A1 - Stein, Christoph A1 - Weber, Marcus A1 - Winkelmann, Stefanie T1 - Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design N2 - Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account. T3 - ZIB-Report - 21-19 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82797 SN - 1438-0064 ER - TY - GEN A1 - Ray, Sourav A1 - Sunkara, Vikram A1 - Schütte, Christof A1 - Weber, Marcus T1 - How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs N2 - Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a $\mu$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017). MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction. T3 - ZIB-Report - 20-18 KW - Opioid, Ligand-Receptor Interaction, Binding Kinetics, Molecular Dynamics, Metadynamics, SQRA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78437 SN - 1438-0064 ER - TY - CHAP A1 - Kostre, Margarita A1 - Sunkara, Vikram A1 - Djurdjevac Conrad, Natasa T1 - Inference of historical influence networks T2 - International Conference on Complex Networks & Their Applications Proceedings N2 - We study the romanization process of northern Africa from 50 BC till 300 AD. Our goal is to infer the communication strength between different subregions, based on the evolution of the status of cities. Herefore, we use the general inverse infection model, that infers the weights of a known underlying network, given observations of the spreading on this network. As infection process we choose the SI metapopulation model, where I stands for a city with a Roman status. To solve the minimization problem we use the particle swarm optimization algorithm with a specific choice of parameters. Y1 - 2021 U6 - https://doi.org/10.12752/8558 SP - 110 EP - 113 ET - International Conference on Complex Networks & Their Applications ER - TY - JOUR A1 - Thies, Arne A1 - Sunkara, Vikram A1 - Ray, Sourav A1 - Wulkow, Hanna A1 - Celik, M. Özgür A1 - Yergöz, Fatih A1 - Schütte, Christof A1 - Stein, Christoph A1 - Weber, Marcus A1 - Winkelmann, Stefanie T1 - Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design JF - Scientific Reports N2 - We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-27699-w VL - 13 IS - 607 ER - TY - JOUR A1 - Raharinirina, Nomenjanahary Alexia AND Sunkara, Vikram AND von Kleist, Max AND Fackeldey, Konstantin AND Weber, Marcus T1 - Multi-Input data ASsembly for joint Analysis (MIASA): A framework for the joint analysis of disjoint sets of variables JF - PLOS ONE Y1 - 2024 U6 - https://doi.org/10.1371/journal.pone.0302425 VL - 19 IS - 5 SP - 1 EP - 26 PB - Public Library of Science ER -