TY - JOUR A1 - Thies, Arne A1 - Sunkara, Vikram A1 - Ray, Sourav A1 - Wulkow, Hanna A1 - Celik, M. Özgür A1 - Yergöz, Fatih A1 - Schütte, Christof A1 - Stein, Christoph A1 - Weber, Marcus A1 - Winkelmann, Stefanie T1 - Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design JF - Scientific Reports N2 - We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-27699-w VL - 13 IS - 607 ER - TY - JOUR A1 - del Razo, Mauricio A1 - Winkelmann, Stefanie A1 - Klein, Rupert A1 - Höfling, Felix T1 - Chemical diffusion master equation: formulations of reaction-diffusion processes on the molecular level JF - Journal of Mathematical Physics N2 - The chemical diffusion master equation (CDME) describes the probabilistic dynamics of reaction--diffusion systems at the molecular level [del Razo et al., Lett. Math. Phys. 112:49, 2022]; it can be considered the master equation for reaction--diffusion processes. The CDME consists of an infinite ordered family of Fokker--Planck equations, where each level of the ordered family corresponds to a certain number of particles and each particle represents a molecule. The equations at each level describe the spatial diffusion of the corresponding set of particles, and they are coupled to each other via reaction operators --linear operators representing chemical reactions. These operators change the number of particles in the system, and thus transport probability between different levels in the family. In this work, we present three approaches to formulate the CDME and show the relations between them. We further deduce the non-trivial combinatorial factors contained in the reaction operators, and we elucidate the relation to the original formulation of the CDME, which is based on creation and annihilation operators acting on many-particle probability density functions. Finally we discuss applications to multiscale simulations of biochemical systems among other future prospects. Y1 - 2023 U6 - https://doi.org/10.1063/5.0129620 VL - 64 IS - 1 ER - TY - JOUR A1 - del Razo, Mauricio A1 - Frömberg, Daniela A1 - Straube, Arthur A1 - Schütte, Christof A1 - Höfling, Felix A1 - Winkelmann, Stefanie T1 - A probabilistic framework for particle-based reaction–diffusion dynamics using classical Fock space representations JF - Letters in Mathematical Physics Y1 - 2022 U6 - https://doi.org/10.1007/s11005-022-01539-w VL - 112 IS - 49 ER - TY - JOUR A1 - Montefusco, Alberto A1 - Helfmann, Luzie A1 - Okunola, Toluwani A1 - Winkelmann, Stefanie A1 - Schütte, Christof T1 - Partial mean-field model for neurotransmission dynamics JF - Mathematical Biosciences N2 - This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the stochastic-spatial particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios. Y1 - 2024 U6 - https://doi.org/10.1016/j.mbs.2024.109143 VL - 369 ER - TY - JOUR A1 - Lücke, Marvin A1 - Winkelmann, Stefanie A1 - Heitzig, Jobst A1 - Molkenthin, Nora A1 - Koltai, Péter T1 - Learning interpretable collective variables for spreading processes on networks JF - Physical Review E N2 - Collective variables (CVs) are low-dimensional projections of high-dimensional system states. They are used to gain insights into complex emergent dynamical behaviors of processes on networks. The relation between CVs and network measures is not well understood and its derivation typically requires detailed knowledge of both the dynamical system and the network topology. In this Letter, we present a data-driven method for algorithmically learning and understanding CVs for binary-state spreading processes on networks of arbitrary topology. We demonstrate our method using four example networks: the stochastic block model, a ring-shaped graph, a random regular graph, and a scale-free network generated by the Albert-Barabási model. Our results deliver evidence for the existence of low-dimensional CVs even in cases that are not yet understood theoretically. Y1 - 2024 U6 - https://doi.org/10.1103/PhysRevE.109.L022301 VL - 109 IS - 2 SP - L022301 ER - TY - CHAP A1 - Lücke, Marvin A1 - Koltai, Peter A1 - Winkelmann, Stefanie A1 - Molkethin, Nora A1 - Heitzig, Jobst T1 - Discovering collective variable dynamics of agent-based models T2 - 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022 N2 - Analytical approximations of the macroscopic behavior of agent-based models (e.g. via mean-field theory) often introduce a significant error, especially in the transient phase. For an example model called continuous-time noisy voter model, we use two data-driven approaches to learn the evolution of collective variables instead. The first approach utilizes the SINDy method to approximate the macroscopic dynamics without prior knowledge, but has proven itself to be not particularly robust. The second approach employs an informed learning strategy which includes knowledge about the agent-based model. Both approaches exhibit a considerably smaller error than the conventional analytical approximation. Y1 - 2022 U6 - https://doi.org/https://doi.org/10.15495/EPub_UBT_00006809 ER - TY - JOUR A1 - Engel, Maximilian A1 - Olicón-Méndez, Guillermo A1 - Wehlitz, Nathalie A1 - Winkelmann, Stefanie T1 - Synchronization and random attractors in reaction jump processes JF - Journal of Dynamics and Differential Equations N2 - This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems. Y1 - 2024 U6 - https://doi.org/10.1007/s10884-023-10345-4 ER - TY - JOUR A1 - Steudle, Gesine A1 - Winkelmann, Stefanie A1 - Fürst, Steffen A1 - Wolf, Sarah T1 - Understanding Memory Mechanisms in Socio-Technical Systems: the Case of an Agent-based Mobility Model JF - Advances in Complex Systems N2 - This paper explores memory mechanisms in complex socio-technical systems, using a mobility demand model as an example case. We simplified a large-scale agent-based mobility model into a Markov process and discover that the mobility decision process is non-Markovian. This is due to its dependence on the system’s history, including social structure and local infrastructure, which evolve based on prior mobility decisions. To make the process Markovian, we extend the state space by incorporating two history-dependent components. Although our model is a very much reduced version of the original one, it remains too complex for the application of usual analytic methods. Instead, we employ simulations to examine the functionalities of the two history-dependent components. We think that the structure of the analyzed stochastic process is exemplary for many socio-technical, -economic, -ecological systems. Additionally, it exhibits analogies with the framework of extended evolution, which has previously been used to study cultural evolution. Y1 - 2024 U6 - https://doi.org/10.1142/S0219525924400034 VL - 27 ER - TY - JOUR A1 - Wehlitz, Nathalie A1 - Sadeghi, Mohsen A1 - Montefusco, Alberto A1 - Schütte, Christof A1 - Pavliotis, Grigorios A. A1 - Winkelmann, Stefanie T1 - Approximating particle-based clustering dynamics by stochastic PDEs N2 - This work proposes stochastic partial differential equations (SPDEs) as a practical tool to replicate clustering effects of more detailed particle-based dynamics. Inspired by membrane mediated receptor dynamics on cell surfaces, we formulate a stochastic particle-based model for diffusion and pairwise interaction of particles, leading to intriguing clustering phenomena. Employing numerical simulation and cluster detection methods, we explore the approximation of the particle-based clustering dynamics through mean-field approaches. We find that SPDEs successfully reproduce spatiotemporal clustering dynamics, not only in the initial cluster formation period, but also on longer time scales where the successive merging of clusters cannot be tracked by deterministic mean-field models. The computational efficiency of the SPDE approach allows us to generate extensive statistical data for parameter estimation in a simpler model that uses a Markov jump process to capture the temporal evolution of the cluster number. Y1 - 2024 ER -