TY - GEN A1 - Cordes, Frank A1 - Weber, Marcus A1 - Schmidt-Ehrenberg, Johannes T1 - Metastable Conformations via successive Perron-Cluster Cluster Analysis of dihedrals N2 - Decomposition of the high dimensional conformational space of bio-molecules into metastable subsets is used for data reduction of long molecular trajectories in order to facilitate chemical analysis and to improve convergence of simulations within these subsets. The metastability is identified by the Perron-cluster cluster analysis of a Markov process that generates the thermodynamic distribution. A necessary prerequisite of this analysis is the discretization of the conformational space. A combinatorial approach via discretization of each degree of freedom will end in the so called ''curse of dimension''. In the following paper we analyze Hybrid Monte Carlo simulations of small, drug-like biomolecules and focus on the dihedral degrees of freedom as indicators of conformational changes. To avoid the ''curse of dimension'', the projection of the underlying Markov operator on each dihedral is analyzed according to its metastability. In each decomposition step of a recursive procedure, those significant dihedrals, which indicate high metastability, are used for further decomposition. The procedure is introduced as part of a hierarchical protocol of simulations at different temperatures. The convergence of simulations within metastable subsets is used as an ''a posteriori'' criterion for a successful identification of metastability. All results are presented with the visualization program AmiraMol. T3 - ZIB-Report - 02-40 KW - metastability KW - Perron-Cluster Cluster Analysis KW - curse of dimension KW - Hybrid Monte Carlo KW - significant dihedrals Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7074 ER - TY - GEN A1 - May, Andreas A1 - Eisenhardt, Steffen A1 - Schmidt-Ehrenberg, Johannes A1 - Cordes, Frank T1 - Rigid body docking for Virtual Screening N2 - A recently developed algorithm allows Rigid Body Docking of ligands to proteins, regardless of the accessibility and location of the binding site. The Docking procedure is divided into three subsequent optimization phases, two of which utilize rigid body dynamics. The last one is applied with the ligand already positioned inside the binding pocket and accounts for full flexibility. Initially, a combination of geometrical and force-field based methods is used as a Coarse Docking strategy, considering only Lennard-Jones interactions between the target and pharmaceutically relevant atoms or functional groups. The protein is subjected to a Hot Spot Analysis, which reveals points of high affinity in the protein environment towards these groups. The hot spots are distributed into different subsets according to their group affiliation. The ligand is described as a complementary point set, consisting of the same subsets. Both sets are matched in $\mathrm{I\!R}^{3}$, by superimposing members of the same subsets. In the first instance, steric inhibition is nearly neglected, preventing the system's trajectory from trapping in local minima and thus from finding false positive solutions. Hence the exact location of the binding site can be determined fast and reliably without any additional information. Subsequently, errors resulting from approximations are minimized via finetuning, this time considering both Lennard-Jones and Coulomb forces. Finally, the potential energy of the whole complex is minimized. In a first evaluation, results are rated by a reduced scoring function considering only noncovalent interaction energies. Exemplary Screening results will be given for specific ligands. T3 - ZIB-Report - 03-47 KW - docking KW - point matching KW - identification of active sites Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7690 ER - TY - THES A1 - Baum, Daniel T1 - A Point-Based Algorithm for Multiple 3D Surface Alignment of Drug-Sized Molecules N2 - One crucial step in virtual drug design is the identification of new lead structures with respect to a pharmacological target molecule. The search for new lead structures is often done with the help of a pharmacophore, which carries the essential structural as well as physico-chemical properties that a molecule needs to have in order to bind to the target molecule. In the absence of the target molecule, such a pharmacophore can be established by comparison of a set of active compounds. In order to identify their common features,a multiple alignment of all or most of the active compounds is necessary. Moreover, since the “outer shape” of the molecules plays a major role in the interaction between drug and target, an alignment algorithm aiming at the identification of common binding properties needs to consider the molecule’s “outer shape”, which can be approximated by the solvent excluded surface. In this thesis, we present a new approach to molecular surface alignment based on a discrete representation of shape as well as physico-chemical properties by points distributed on the solvent excluded surface. We propose a new method to distribute points regularly on a surface w.r.t. a smoothly varying point density given on that surface. Since the point distribution algorithm is not restricted to molecular surfaces, it might also be of interest for other applications. For the computation of pairwise surface alignments, we extend an existing point matching scheme to surface points, and we develop an efficient data structure speeding up the computation by a factor of three. Moreover, we present an approach to compute multiple alignments from pairwise alignments, which is able to handle a large number of surface points. All algorithms are evaluated on two sets of molecules: eight thermolysin inhibitors and seven HIV-1 protease inhibitors. Finally, we compare the results obtained from surface alignment with the results obtained by applying an atom alignment approach. N2 - Die Identifizierung neuer Leitstrukturen (lead structures) zur Entwicklung optimierter Wirkstoffe ist ein äußerst wichtiger Schritt in der virtuellen Wirkstoffentwicklung (virtual drug design). Die Suche nach neuen Leitstrukturen wird oft mit Hilfe eines Pharmakophor-Modells durchgeführt, welches die wichtigsten strukturellen wie auch physiko-chemischen Eigenschaften eines bindenden Moleküls in sich vereint. Ist das Zielmolekül (target) nicht bekannt, kann das Pharmakophor-Modell mit Hilfe des Vergleiches aktiver Moleküle erstellt werden. Hier ist insbesondere die gleichzeitige Überlagerung (multiple alignment) aller oder nahezu aller Moleküle notwendig. Da bei der Interaktion zweier Moleküle die "äußere Form" der Moleküle eine besondere Rolle spielt, sollte diese von jedem Überlagerungsalgorithmus, der sich mit der Identifizierung von Bindungseigenschaften befasst, berücksichtigt werden. Dabei kann die "äußere Form" durch eine bestimmte Art von molekularer Oberfläche approximiert werden, die man als solvent excluded surface bezeichnet. In dieser Arbeit stellen wir einen neuen Ansatz zur Überlagerung molekularer Oberflächen dar, der auf einer diskreten Repräsentation sowohl der Form als auch der molekularen Eigenschaften mittels Punkten beruht. Um die Punkte auf der molekularen Oberfläche möglichst regulär entsprechend einer gegebenen Punktdichte zu verteilen, entwickeln wir eine neue Methode. Diese Methode ist nicht auf Moleküloberflächen beschränkt und könnte daher auch für andere Anwendungen von Interesse sein. Basierend auf einem bekannten Point-Matching Verfahren entwickeln wir einen Point-Matching Algorithmus für Oberflächenpunkte. Dazu erarbeiten wir u.a. eine effiziente Datenstruktur, die den Algorithmus um einen Faktor von drei beschleunigt. Darüberhinaus stellen wir einen Ansatz vor, der Mehrfachüberlagerungen (multiple alignments) aus paarweisen Überlagerungen berechnet. Die Herausforderung besteht hierbei vor allem in der großen Anzahl von Punkten, die berücksichtigt werden muss. Die vorgestellten Algorithmen werden an zwei Gruppen von Molekülen evaluiert, wobei die erste Gruppe aus acht Thermolysin Inhibitoren besteht, die zweite aus sieben HIV-1 Protease Inhibitoren. Darüberhinaus vergleichen wir die Ergebnisse der Oberflächenüberlagerung mit denen einer Atommittelpunktüberlagerung. KW - molecular surface alignment KW - point-based approximation KW - multiple alignment Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000002759-2 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002759 ER -