TY - CHAP A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten ED - Perron, Laurent ED - Trick, Michael T1 - Counting Solutions of Integer Programs Using Unrestricted Subtree Detection T2 - Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008 Y1 - 2008 UR - http://opus.kobv.de/zib/volltexte/2008/1092/ VL - 5015 SP - 278 EP - 282 PB - Springer ER - TY - CHAP A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Koch, Thorsten A1 - Wolter, Kati ED - Perron, Laurent ED - Trick, Michael T1 - Constraint Integer Programming: A New Approach to Integrate CP and MIP T2 - Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008 Y1 - 2008 U6 - https://doi.org/10.1007/978-3-540-68155-7_4 VL - 5015 SP - 6 EP - 20 PB - Springer ER - TY - GEN A1 - Ridder, Johanna T1 - Wegeprobleme der Graphentheorie T1 - Path problems in graph theory N2 - Den kürzesten Weg in einem Graphen zu finden ist ein klassisches Problem der Graphentheorie. Über einen Vortrag zu diesem Thema beim Tag der Mathematik 2007 von R. Borndörfer kam ich in Kontakt mit dem Konrad-Zuse-Zentrum (ZIB), das sich u.a. mit Wegeoptimierung beschäftigt. Ein Forschungsschwerpunkt dort ist im Rahmen eines Projekts zur Chipverifikation das Zählen von Lösungen, das, wie wir sehen werden, eng mit dem Zählen von Wegen zusammenhängt. Anhand von zwei Fragen aus der Graphentheorie soll diese Facharbeit unterschiedliche Lösungsmethoden untersuchen. Wie bestimmt man den kürzesten Weg zwischen zwei Knoten in einem Graphen und wie findet man alle möglichen Wege? Nach einer Einführung in die Graphentheorie und einer Konkretisierung der Probleme wird zunächst für beide eine Lösung mit auf Graphen basierenden Algorithmen vorgestellt. Während der Algorithmus von Dijkstra sehr bekannt ist, habe ich für das Zählen von Wegen einen eigenen Algorithmus auf der Basis der Tiefensuche entwickelt. Im zweiten Teil der Arbeit wird das Konzept der ganzzahligen Programmierung vorgestellt und die Lösungsmöglichkeiten für Wegeprobleme, die sich darüber ergeben. Schließlich wurden die vorgestellten Algorithmen am Beispiel des S- und U-Bahnnetzes von Berlin implementiert und mit Programmen, die die gleichen Fragen über ganzzahlige Programmierung lösen, verglichen. T3 - ZIB-Report - 08-26 KW - Graphen KW - Wegeprobleme KW - Zählen KW - Graphs KW - path problems KW - counting Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10782 SN - 1438-0064 ER - TY - GEN A1 - Heinz, Stefan A1 - Sachenbacher, Martin T1 - Using Model Counting to Find Optimal Distinguishing Tests N2 - Testing is the process of stimulating a system with inputs in order to reveal hidden parts of the system state. In the case of non-deterministic systems, the difficulty arises that an input pattern can generate several possible outcomes. Some of these outcomes allow to distinguish between different hypotheses about the system state, while others do~not. In this paper, we present a novel approach to find, for non-deterministic systems modeled as constraints over variables, tests that allow to distinguish among the hypotheses as good as possible. The idea is to assess the quality of a test by determining the ratio of distinguishing (good) and not distinguishing (bad) outcomes. This measure refines previous notions proposed in the literature on model-based testing and can be computed using model counting techniques. We propose and analyze a greedy-type algorithm to solve this test optimization problem, using existing model counters as a building block. We give preliminary experimental results of our method, and discuss possible improvements. T3 - ZIB-Report - 08-32 KW - zählen KW - automatische Test Generierung KW - counting KW - automated test generation KW - constraint programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10832 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten T1 - Counting solutions of integer programs using unrestricted subtree detection N2 - In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection. T3 - ZIB-Report - 08-09 KW - Zählen KW - ganzzahlige Programme KW - IP KW - counting KW - integer programming KW - IP Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10632 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: a New Approach to Integrate CP and MIP N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-01 KW - Constraint Programming KW - Ganzzahlige Programmierung KW - Branch-And-Cut KW - Optimierungssoftware KW - Chipverifikation KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10520 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Brinkmann, Raik A1 - Wedler, Markus T1 - Property Checking with Constraint Integer Programming N2 - We address the property checking problem for SoC design verification at the register transfer level (RTL) by integrating techniques from integer programming, constraint programming, and SAT solving. Specialized domain propagation and preprocessing algorithms for individual RTL operations extend a general constraint integer programming framework. Conflict clauses are learned by analyzing infeasible LPs and deductions, and by employing reverse propagation. Experimental results show that our approach outperforms SAT techniques for proving the validity of properties on circuits containing arithmetics. T3 - ZIB-Report - 07-37 KW - formale Chip Verifikation KW - constraint integer programming KW - scip KW - Eigenschaftsprüfer KW - formal chip verification KW - constraint integer programming KW - scip KW - property checking KW - micro chip Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10376 SN - 1438-0064 ER - TY - THES A1 - Achterberg, Tobias T1 - Constraint Integer Programming N2 - This thesis introduces the novel paradigm of constraint integer programming (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method. N2 - Diese Arbeit stellt einen integrierten Ansatz aus Constraint Programming (CP) und Gemischt-Ganzzahliger Programmierung (Mixed Integer Programming, MIP) vor, den wir Constraint Integer Programming (CIP) nennen. Sowohl Modellierungs- als auch Lösungstechniken beider Felder fließen in den neuen integrierten Ansatz ein, um die unterschiedlichen Stärken der beiden Gebiete zu kombinieren. Als weiteren Beitrag stellen wir der wissenschaftlichen Gemeinschaft die Software SCIP zur Verfügung, die ein Framework für Constraint Integer Programming darstellt und zusätzlich Techniken des SAT-Lösens beinhaltet. SCIP ist im Source Code für akademische und nicht-kommerzielle Zwecke frei erhältlich. Unser Ansatz des Constraint Integer Programming ist eine Verallgemeinerung von MIP, die zusätzlich die Verwendung beliebiger Constraints erlaubt, solange sich diese durch lineare Bedingungen ausdrücken lassen falls alle ganzzahligen Variablen auf feste Werte eingestellt sind. Die Constraints werden von einer beliebigen Kombination aus CP- und MIP-Techniken behandelt. Dies beinhaltet insbesondere die Domain Propagation, die Relaxierung der Constraints durch lineare Ungleichungen, sowie die Verstärkung der Relaxierung durch dynamisch generierte Schnittebenen. Die derzeitige Version von SCIP enthält alle Komponenten, die für das effiziente Lösen von Gemischt-Ganzzahligen Programmen benötigt werden. Die vorliegende Arbeit liefert eine ausführliche Beschreibung dieser Komponenten und bewertet verschiedene Varianten in Hinblick auf ihren Einfluß auf das Gesamt-Lösungsverhalten anhand von aufwendigen praktischen Experimenten. Dabei wird besonders auf die algorithmischen Aspekte eingegangen. Der zweite Hauptteil der Arbeit befasst sich mit der Chip-Design-Verifikation, die ein wichtiges Thema innerhalb des Fachgebiets der Electronic Design Automation darstellt. Chip-Hersteller müssen sicherstellen, dass der logische Entwurf einer Schaltung der gegebenen Spezifikation entspricht. Andernfalls würde der Chip fehlerhaftes Verhalten aufweisen, dass zu Fehlfunktionen innerhalb des Gerätes führen kann, in dem der Chip verwendet wird. Ein wichtiges Teilproblem in diesem Feld ist das Eigenschafts-Verifikations-Problem, bei dem geprüft wird, ob der gegebene Schaltkreisentwurf eine gewünschte Eigenschaft aufweist. Wir zeigen, wie dieses Problem als Constraint Integer Program modelliert werden kann und geben eine Reihe von problemspezifischen Algorithmen an, die die Struktur der einzelnen Constraints und der Gesamtschaltung ausnutzen. Testrechnungen auf Industrie-Beispielen vergleichen unseren Ansatz mit den bisher verwendeten SAT-Techniken und belegen den Erfolg unserer Methode. KW - Ganzzahlige Programmierung KW - Constraint Programmierung KW - SAT KW - Chip-Verifikation KW - integer programming KW - constraint programming KW - SAT KW - chip verification Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:83-opus-16117 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: Techniques and Applications N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-43 KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10950 SN - 1438-0064 ER -