TY - GEN A1 - Borndörfer, Ralf A1 - Eisenblätter, Andreas A1 - Grötschel, Martin A1 - Martin, Alexander T1 - The Orientation Model for Frequency Assignment Problems N2 - Mobile telecommunication systems establish a large number of communication links with a limited number of available frequencies; reuse of the same or adjacent frequencies on neighboring links causes interference. The task to find an assignment of frequencies to channels with minimal interference is the frequency assignment problem. The frequency assignment problem is usually treated as a graph coloring problem where the number of colors is minimized, but this approach does not model interference minimization correctly. We give in this paper a new integer programming formulation of the frequency assignment problem, the orientation model, and develop a heuristic two-stage method to solve it. The algorithm iteratively solves an outer and an inner optimization problem. The outer problem decides for each pair of communication links which link gets the higher frequency and leads to an acyclic subdigraph problem with additional longest path restrictions. The inner problem to find an optimal assignment respecting an orientation leads to a min-cost flow problem. T3 - ZIB-Report - TR-98-01 KW - Minimum-Cost Flow Problems KW - Cellular Radio Telephone Systems KW - Frequency Assignment Problem KW - Integer Programming Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-5627 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Grötschel, Martin A1 - Koster, Arie M.C.A. T1 - Frequency Planning and Ramifications of Coloring N2 - This paper surveys frequency assignment problems coming up in planning wireless communication services. It particularly focuses on cellular mobile phone systems such as GSM, a technology that revolutionizes communication. Traditional vertex coloring provides a conceptual framework for the mathematical modeling of many frequency planning problems. This basic form, however, needs various extensions to cover technical and organizational side constraints. Among these ramifications are $T$-coloring and list coloring. To model all the subtleties, the techniques of integer programming have proven to be very useful. The ability to produce good frequency plans in practice is essential for the quality of mobile phone networks. The present algorithmic solution methods employ variants of some of the traditional coloring heuristics as well as more sophisticated machinery from mathematical programming. This paper will also address this issue. Finally, this paper discusses several practical frequency assignment problems in detail, states the associated mathematical models, and also points to public electronic libraries of frequency assignment problems from practice. The associated graphs have up to several thousand nodes and range from rather sparse to almost complete. T3 - ZIB-Report - 00-47 KW - frequency assignment KW - graph coloring Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6152 ER - TY - GEN A1 - Aardal, Karen I. A1 - Hoesel, Stan P.M. van A1 - Koster, Arie M.C.A. A1 - Mannino, Carlo A1 - Sassano, Antonio T1 - Models and Solution Techniques for Frequency Assignment Problems N2 - {\begin{rawhtml} Revised Version unter http://dx.doi.org/10.1007/s10479-007-0178-0 \end{rawhtml}} Wireless communication is used in many different situations such as mobile telephony, radio and TV broadcasting, satellite communication, and military operations. In each of these situations a frequency assignment problem arises with application specific characteristics. Researchers have developed different modelling ideas for each of the features of the problem, such as the handling of interference among radio signals, the availability of frequencies, and the optimization criterion. This survey gives an overview of the models and methods that the literature provides on the topic. We present a broad description of the practical settings in which frequency assignment is applied. We also present a classification of the different models and formulations described in the literature, such that the common features of the models are emphasized. The solution methods are divided in two parts. Optimization and lower bounding techniques on the one hand, and heuristic search techniques on the other hand. The literature is classified according to the used methods. Again, we emphasize the common features, used in the different papers. The quality of the solution methods is compared, whenever possible, on publicly available benchmark instances. T3 - ZIB-Report - 01-40 KW - frequency assignment Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6667 ER -