TY - CHAP A1 - Jäger, Klaus A1 - Hammerschmidt, Martin A1 - Köppel, Grit A1 - Burger, Sven A1 - Becker, Christiane T1 - On Accurate Simulations of Thin-Film Solar Cells With a Thick Glass Superstrate T2 - Light, Energy and the Environment 2016 Y1 - 2016 U6 - https://doi.org/10.1364/PV.2016.PM3B.5 SP - PM3B.5 ER - TY - JOUR A1 - Barth, Carlo A1 - Probst, Jürgen A1 - Herrmann, Sven A1 - Hammerschmidt, Martin A1 - Becker, Christiane T1 - Numerical characterization of symmetry properties for photonic crystals with hexagonal lattice JF - Proc. SPIE N2 - We present a numerical method to characterize the symmetry properties of photonic crystal (PhC) modes based on field distributions, which themselves can be obtained numerically. These properties can be used to forecast specific features of the optical response of such systems, e.g. which modes are allowed to couple to external radiation fields. We use 2D PhCs with a hexagonal lattice of holes in dielectric as an example and apply our technique to reproduce results from analytical considerations. Further, the method is extended to fully vectorial problems in view of 3D PhCs and PhC slabs, its functionality is demonstrated using test cases and, finally, we provide an efficient implementation. The technique can thus readily be applied to output data of all band structure computation methods or even be embedded – gaining additional information about the mode symmetry. Y1 - 2016 U6 - https://doi.org/10.1117/12.2227094 VL - 9885 SP - 988506 ER - TY - JOUR A1 - Jäger, Klaus A1 - Köppel, Grit A1 - Barth, Carlo A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Burger, Sven A1 - Schmidt, Frank A1 - Becker, Christiane T1 - Sinusoidal gratings for optimized light management in c-Si thin-film solar cells JF - Proc. SPIE Y1 - 2016 U6 - https://doi.org/10.1117/12.2225459 VL - 9898 SP - 989808 ER - TY - THES A1 - Hammerschmidt, Martin T1 - Optical simulation of complex nanostructured solar cells with a reduced basis method N2 - Simulations of optical processes and complex nanostructured devices have become omnipresent in recent years in several fields of current research and industrial applications, not limited to the field of photovoltaics. Devices or processes are optimized with respect to a certain objective where the underlying physical processes are described by partial differential equations. In photovoltaics and photonics electromagnetic fields are investigated which are governed by Maxwell’s equations. In this thesis a reduced basis method for the solution of the parameter dependent electromagnetic scattering problem with arbitrary parameters is developed. The method is developed with the specific challenges arising in optical simulations of thin-film silicon solar cells in mind. These are large in domain size and have a complex three-dimensional structure, making optimization tasks infeasible if high-accuracy of the electromagnetic field solution is required. The application of the empirical interpolation methods allows to expand an arbitrary parameter dependence affinely. Thus not only geometries, but also material tensors and source fields can be parameterized. Additionally, the required non-linear post-processing steps of the electromagnetic field to derive energy fluxes or volume absorption are addressed. The reduced basis method allows to reduce the computational costs by orders of magnitude compared to efficient finite element solvers. In addition, an efficient tailored domain decomposition algorithm is presented to model incoherent layers or illuminations in optical systems efficiently. This is of particular interest for solar cells in superstrate configuration where the absorber is illuminated through a glass substrate. The developed methods are employed in application examples taken from collaborations with experimentalists active in the joint lab “BerOSE” (Berlin Joint Lab for Optical Simulations for Energy Research). The optical model of a thin-film silicon multi-junction with incoherent light-trapping is characterized in great detail. The computational gains through hybrid, hp adaptive finite elements are studied and the incoherent domain decomposition algorithm is applied to model a more realistic light-trapping by the glass substrate. The numerical examples of a hexagonal nano-hole array and multi-junction silicon solar cell with a tunable intermediate reflector layer show that the reduced basis method is well suited as a forward solver for modeling and optimization tasks arising in photovoltaics and photonics. Reduced models for illumination and geometric parameters are built providing up to five orders of magnitude savings in computational costs. Resonance phenomena present in the nano-hole array example are detected and the model adapts itself automatically. KW - reduced basis method; model reduction; electromagnetics; photonics; solar cells; nanooptics; Maxwells equations; incoherence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000102429-1 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000102429 ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Döpking, Sandra A1 - Burger, Sven A1 - Matera, Sebastian T1 - Field Heterogeneities and Their Impact on Photocatalysis: Combining Optical and Kinetic Monte Carlo Simulations on the Nanoscale JF - J. Phys. Chem. C Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.9b11469 VL - 124 SP - 3177 ER - TY - JOUR A1 - Chen, Duote A1 - Manley, Phillip A1 - Tockhorn, Philipp A1 - Eisenhauer, David A1 - Köppel, Grit A1 - Hammerschmidt, Martin A1 - Burger, Sven A1 - Albrecht, Steve A1 - Becker, Christiane A1 - Jäger, Klaus T1 - Nanophotonic Light Management for Perovskite-Silicon Tandem Solar Cells JF - J. Photonics Energy Y1 - 2018 U6 - https://doi.org/10.1117/1.JPE.8.022601 VL - 8 SP - 022601 ER - TY - CHAP A1 - Burger, Sven A1 - Gutsche, Philipp A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Schmidt, Frank A1 - Wohlfeil, Benjamin A1 - Zschiedrich, Lin T1 - Hp-finite-elements for simulating electromagnetic fields in optical devices with rough textures T2 - Proc. SPIE Y1 - 2015 U6 - https://doi.org/10.1117/12.2190119 VL - 9630 SP - 96300S ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Zschiedrich, Lin A1 - Burger, Sven A1 - Schmidt, Frank T1 - Reduced basis method for Maxwell's equations with resonance phenomena T2 - Proc. SPIE N2 - Rigorous optical simulations of 3-dimensional nano-photonic structures are an important tool in the analysis and optimization of scattering properties of nano-photonic devices or parameter reconstruction. To construct geometrically accurate models of complex structured nano-photonic devices the finite element method (FEM) is ideally suited due to its flexibility in the geometrical modeling and superior convergence properties. Reduced order models such as the reduced basis method (RBM) allow to construct self-adaptive, error-controlled, very low dimensional approximations for input-output relationships which can be evaluated orders of magnitude faster than the full model. This is advantageous in applications requiring the solution of Maxwell's equations for multiple parameters or a single parameter but in real time. We present a reduced basis method for 3D Maxwell's equations based on the finite element method which allows variations of geometric as well as material and frequency parameters. We demonstrate accuracy and efficiency of the method for a light scattering problem exhibiting a resonance in the electric field. T3 - ZIB-Report - 15-37 KW - reduced basis method KW - finite element method KW - maxwell equation KW - photonic crystal KW - nano-photonics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55687 SN - 1438-0064 VL - 9630 SP - 96300R ER - TY - JOUR A1 - Becker, Christiane A1 - Wyss, Philippe A1 - Eisenhauer, David A1 - Probst, Jürgen A1 - Preidel, Veit A1 - Hammerschmidt, Martin A1 - Burger, Sven T1 - 5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields JF - Sci. Rep. Y1 - 2014 U6 - https://doi.org/10.1038/srep05886 VL - 4 SP - 5886 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Döpking, Sandra A1 - Burger, Sven A1 - Matera, Sebastian T1 - Field Heterogeneities and their Impact on Photocatalysis: Combining optical and kinetic Monte Carlo Simulations on the Nanoscale N2 - Gaining insights into the working principles of photocatalysts on an atomic scale is a challenging task. The obviously high complexity of the reaction mechanism involving photo-excited electrons and holes is one reason. Another complicating aspect is that the electromagnetic field, driving photocatalysis, is not homogeneous on a nanoscale level for particle based catalysts as it is influenced by the particle’s shape and size. We present a simple model, inspired by the CO2 reduction on titania anatase, which addresses the impact of these heterogeneities on the photocatalytic kinetics by combining kinetic Monte Carlo with electromagnetic wave simulations. We find that average activity and especially efficiency might differ significantly between different particles. Moreover, we find sizable variation of the catalytic activity on a single facet of a nanocrystal. Besides this quantitative heterogeneity, the coverage situation in general changes laterally on this facet and we observe a concomitant change of the rate-determining steps. This heterogeneity on all levels of photocatalytic activity is masked in experimental studies, where only the spatially averaged activity can be addressed. Microkinetic models based on experimental findings might therefore not represent the true micro- scopic behavior, and mechanistic conclusion drawn from these need to be handled with care. T3 - ZIB-Report - 17-20 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-63690 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Burger, Sven A1 - Pomplun, Jan A1 - Schmidt, Frank T1 - Reduced basis method for the optimization of nano-photonic devices N2 - Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems of nano-optical devices as well as inverse problems for parameter reconstructions occuring e. g. in optical metrology. The reduced basis method presented here relies on a finite element modeling of the scattering problem with parametrization of materials, geometries and sources. T3 - ZIB-Report - 16-10 KW - reduced basis method KW - model reduction KW - optical critical dimension metrology KW - electromagnetic field solver Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57556 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures T2 - Proc. SPIE N2 - Fields such as optical metrology and computational lithography require fast and efficient methods for solving the time-harmonic Maxwell’s equation. Highly accurate geometrical modeling and numerical accuracy atcomputational costs are a prerequisite for any simulation study of complex nano-structured photonic devices. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem based on the hp-adaptive finite element solver JCMsuite capable of handling geometric and non-geometric parameter dependencies allowing for online evaluations in milliseconds. We apply the RBM to compute light-scatteringoptical wavelengths off periodic arrays of fin field-effect transistors (FinFETs) where geometrical properties such as the width and height of the fin and gate can vary in a large range. T3 - ZIB-Report - 16-05 KW - reduced basis method KW - finite element method KW - rigorous optical modeling KW - reduced order models KW - electromagnetic field solver Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57239 SN - 1438-0064 VL - 9742 SP - 97420M ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Barth, Carlo A1 - Pomplun, Jan A1 - Burger, Sven A1 - Becker, Christiane A1 - Schmidt, Frank T1 - Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs N2 - Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters. T3 - ZIB-Report - 16-06 KW - finite element method KW - rigorous optical modeling KW - photonic crystals KW - reduced basis method KW - parameter estimation KW - optical metrology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57249 SN - 1438-0064 ER - TY - CHAP A1 - Jäger, Klaus A1 - Barth, Carlo A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Burger, Sven A1 - Schmidt, Frank A1 - Becker, Christiane T1 - Sinusoidal Nanotextures for Coupling Light into c-Si Thin-Film Solar Cells T2 - Light, Energy and the Environement 2015 Y1 - 2015 U6 - https://doi.org/10.1364/PV.2015.PTu4B.3 SP - PTu4B.3 ER - TY - CHAP A1 - Barth, Carlo A1 - Jäger, Klaus A1 - Burger, Sven A1 - Hammerschmidt, Martin A1 - Schmidt, Frank A1 - Becker, Christiane T1 - Design of Photonic Crystals with Near-Surface Field Enhancement T2 - Light, Energy and the Environement 2015 Y1 - 2015 U6 - https://doi.org/10.1364/PV.2015.JTu5A.9 SP - JTu5A.9 ER - TY - JOUR A1 - Jäger, Klaus A1 - Barth, Carlo A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Burger, Sven A1 - Schmidt, Frank A1 - Becker, Christiane T1 - Simulations of sinusoidal nanotextures for coupling light into c-Si thin-film solar cells JF - Opt. Express Y1 - 2016 U6 - https://doi.org/10.1364/OE.24.00A569 VL - 24 SP - A569 ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Barth, Carlo A1 - Pomplun, Jan A1 - Burger, Sven A1 - Becker, Christiane A1 - Schmidt, Frank T1 - Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs JF - Proc. SPIE N2 - Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters. Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-58187 VL - 9756 SP - 97561R ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures JF - Proc. SPIE N2 - Fields such as optical metrology and computational lithography require fast and efficient methods for solving the time-harmonic Maxwell's equation. Highly accurate geometrical modelling and numerical accuracy at low computational costs are a prerequisite for any simulation study of complex nano-structured photonic devices. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem based on the hp-adaptive finite element solver JCMsuite capable of handling geometric and non-geometric parameter dependencies allowing for online evaluations in milliseconds. We apply the RBM to compute light-scattering at optical wavelengths of periodic arrays of fin field-effect transistors (FinFETs) where geometrical properties such as the width and height of the fin and gate can vary in a large range. Y1 - 2016 U6 - https://doi.org/10.1117/12.2212367 VL - 9742 SP - 97420M ER - TY - JOUR A1 - Hammerschmidt, Martin A1 - Herrmann, Sven A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Reduced basis method for electromagnetic scattering problem: a case study for FinFETs JF - Optical and Quantum Electronics N2 - Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems of nano-optical devices as well as inverse problems for parameter reconstructions occurring e. g. in optical metrology. The reduced basis method pre- sented here relies on a finite element modeling of the scattering problem with parametrization of materials, geometries and sources. Y1 - 2016 U6 - https://doi.org/10.1007/s11082-016-0530-1 VL - 48 SP - 250 ER - TY - JOUR A1 - Jäger, Klaus A1 - Köppel, Grit A1 - Hammerschmidt, Martin A1 - Burger, Sven A1 - Becker, Christiane T1 - On accurate simulations of thin-film solar cells with a thick glass superstrate JF - Opt. Express Y1 - 2018 U6 - https://doi.org/10.1364/OE.26.000A99 VL - 26 SP - A99 ER -