TY - GEN A1 - Tateiwa, Nariaki A1 - Shinano, Yuji A1 - Yasuda, Masaya A1 - Kaji, Shizuo A1 - Yamamura, Keiichiro A1 - Fujisawa, Katsuki T1 - Massively parallel sharing lattice basis reduction N2 - For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments. T3 - ZIB-Report - 21-38 KW - Discrete optimization KW - Lattice problem KW - Lattice-based cryptography KW - Shortest vector problem KW - Parallel algorithms KW - Ubiquity Generator Framework Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85209 SN - 1438-0064 N1 - under review ER - TY - GEN A1 - Hosoda, Junko A1 - Maher, Stephen J. A1 - Shinano, Yuji A1 - Villumsen, Jonas Christoffer T1 - A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network N2 - Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems. T3 - ZIB-Report - 23-02 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89700 SN - 1438-0064 ER - TY - GEN A1 - Fujii, Koichi A1 - Ito, Naoki A1 - Kim, Sunyoung A1 - Kojima, Masakazu A1 - Shinano, Yuji A1 - Toh, Kim-Chuan T1 - Solving Challenging Large Scale QAPs N2 - We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method efficiently implemented on a powerful computer system using the Ubiquity Generator(UG) framework that can utilize more than 100,000 cores. Lower bounding procedures incorporated in the branch-and-bound method play a crucial role in solving the problems. For a strong lower bounding procedure, we employ the Lagrangian doubly nonnegative (DNN) relaxation and the Newton-bracketing method developed by the authors’ group. In this report, we describe some basic tools used in the project including the lower bounding procedure and branching rules, and present some preliminary numerical results. Our next target problem is QAPs with dimension at least 50, as we have succeeded to solve tai30a and sko42 from QAPLIB for the first time. T3 - ZIB-Report - 21-02 KW - QAP KW - Parallel Branch-and-Bound Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81303 SN - 1438-0064 ER - TY - GEN A1 - Fujii, Koichi A1 - Kim, Sunyoung A1 - Kojima, Masakazu A1 - Mittelmann, Hans D. A1 - Shinano, Yuji T1 - An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c N2 - Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25% gap is successfully obtained, and computing an LB with 1.0% gap is shown to be still quite difficult. T3 - ZIB-Report - 23-27 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-93072 SN - 1438-0064 ER - TY - GEN A1 - Fujii, Koichi A1 - Ito, Naoki A1 - Kim, Sunyoung A1 - Kojima, Masakazu A1 - Shinano, Yuji A1 - Toh, Kim-Chuan T1 - 大規模二次割当問題への挑戦 T2 - 統計数理研究所共同研究リポート 453 最適化:モデリングとアルゴリズム33 2022年3月 「大規模二次割当問題への挑戦」 p.84-p.92 N2 - 二次割当問題は線形緩和が弱いことが知られ,強化のため多様な緩和手法が考案されているが,その一つである二重非負値計画緩和( DNN 緩和)及びその解法として近年研究が進んでいるニュートン・ブラケット法を紹介し,それらに基づく分枝限定法の実装及び数値実験結果について報告する. T2 - Solving Large Scale QAPs with DNN-based Branch-and-bound : a progress report T3 - ZIB-Report - 22-11 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-86779 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji T1 - UG - Ubiquity Generator Framework v1.0.0beta N2 - UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization. UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. v1.0.0: new documentation and cmake, generalization of ug framework, implementation of selfsplitrampup for fiber- and parascip, better memory and time limit handling. KW - parallelization framework KW - branch-and-bound parallelization KW - integer optimization Y1 - 2021 U6 - https://doi.org/10.12752/8521 ER - TY - GEN A1 - Gamrath, Gerald A1 - Anderson, Daniel A1 - Bestuzheva, Ksenia A1 - Chen, Wei-Kun A1 - Eifler, Leon A1 - Gasse, Maxime A1 - Gemander, Patrick A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Halbig, Katrin A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Le Bodic, Pierre A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Miltenberger, Matthias A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Tawfik, Christine A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 7.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 20-10 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78023 SN - 1438-0064 ER - TY - JOUR A1 - Yokoyama, Ryohei A1 - Kamada, Hiroki A1 - Shinano, Yuji A1 - Wakui, Tetsuya T1 - A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model JF - Energy N2 - In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchical mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy supply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering relationships among integer design variables, uncertain energy demands, and integer and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Different types of optimization problems are solved by applying a hierarchical MILP method developed for ordinary optimal design problems without and with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified. Y1 - 2021 U6 - https://doi.org/https://doi.org/10.1016/j.energy.2021.120343 VL - 229 ER - TY - JOUR A1 - Fujii, Koichi A1 - Kim, Sunyoung A1 - Kojima, Masakazu A1 - Mittelmann, Hans D. A1 - Shinano, Yuji T1 - An exceptionally difficult binary quadratic optimization problem with symmetry: a challenge for the largest unsolved QAP instance Tai256c JF - Optimization Letters N2 - Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. Despite this difficulty, it is imperative to decrease the gap in order to ultimately solve the BQOP exactly. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the orbit branching and the isomorphism pruning. With this BB method, a new LB with 1.25% gap is successfully obtained, and computing an LB with gap is shown to be still quite difficult. Y1 - 2024 U6 - https://doi.org/10.1007/s11590-024-02157-2 SN - 1862-4472 PB - Springer Science and Business Media LLC ER - TY - JOUR A1 - Hosoda, Junko A1 - Maher, Stephen J. A1 - Shinano, Yuji A1 - Villumsen, Jonas Christoffer T1 - A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network JF - Computers & Operations Research N2 - Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems. Y1 - 2024 U6 - https://doi.org/10.1016/j.cor.2024.106570 SN - 0305-0548 VL - 165 PB - Elsevier BV ER -