TY - CHAP A1 - Gleixner, Ambros A1 - Kempke, Nils-Christian A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Uslu, Svenja T1 - First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method T2 - Operations Research Proceedings 2019 N2 - In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix. KW - block structure KW - energy system models KW - interior-point method KW - high performance computing KW - linear programming KW - parallelization KW - presolving KW - preprocessing Y1 - 2020 U6 - https://doi.org/10.1007/978-3-030-48439-2_13 SP - 105 EP - 111 PB - Springer International Publishing ET - 1 ER - TY - GEN A1 - Gleixner, Ambros A1 - Kempke, Nils-Christian A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Uslu, Svenja T1 - First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method N2 - In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix. T3 - ZIB-Report - 19-39 KW - block structure KW - energy system models KW - interior-point method KW - high performance computing KW - linear programming KW - parallelization KW - presolving KW - preprocessing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74084 SN - 1438-0064 ER - TY - GEN A1 - Breuer, Thomas A1 - Bussieck, Michael A1 - Cao, Karl-Kien A1 - Cebulla, Felix A1 - Fiand, Frederik A1 - Gils, Hans Christian A1 - Gleixner, Ambros A1 - Khabi, Dmitry A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Wetzel, Manuel T1 - Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods N2 - Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described. T3 - ZIB-Report - 17-75 KW - energy system models KW - interior-point methods KW - high-performance computing Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66183 SN - 1438-0064 ER -