TY - GEN A1 - Berthold, Timo A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Shinano, Yuji T1 - Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite N2 - This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development. T3 - ZIB-Report - 12-27 KW - LP, MIP, CIP, MINLP, modeling, optimization, SCIP, SoPlex, Zimpl Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15654 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Lübbecke, Marco A1 - Möhring, Rolf A1 - Schulz, Jens T1 - A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling N2 - We propose a hybrid approach for solving the resource-constrained project scheduling problem which is an extremely hard to solve combinatorial optimization problem of practical relevance. Jobs have to be scheduled on (renewable) resources subject to precedence constraints such that the resource capacities are never exceeded and the latest completion time of all jobs is minimized. The problem has challenged researchers from different communities, such as integer programming (IP), constraint programming (CP), and satisfiability testing (SAT). Still, there are instances with 60 jobs which have not been solved for many years. The currently best known approach, lazyFD, is a hybrid between CP and SAT techniques. In this paper we propose an even stronger hybridization by integrating all the three areas, IP, CP, and SAT, into a single branch-and-bound scheme. We show that lower bounds from the linear relaxation of the IP formulation and conflict analysis are key ingredients for pruning the search tree. First computational experiments show very promising results. For five instances of the well-known PSPLIB we report an improvement of lower bounds. Our implementation is generic, thus it can be potentially applied to similar problems as well. T3 - ZIB-Report - 10-03 KW - constraint integer programming KW - cumulative constraint KW - scheduling KW - conflict analysis KW - resource-constrained project Scheduling Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11180 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Extending a CIP framework to solve MIQCPs N2 - This paper discusses how to build a solver for mixed integer quadratically constrained programs (MIQCPs) by extending a framework for constraint integer programming (CIP). The advantage of this approach is that we can utilize the full power of advanced MIP and CP technologies. In particular, this addresses the linear relaxation and the discrete components of the problem. For relaxation, we use an outer approximation generated by linearization of convex constraints and linear underestimation of nonconvex constraints. Further, we give an overview of the reformulation, separation, and propagation techniques that are used to handle the quadratic constraints efficiently. We implemented these methods in the branch-cut-and-price framework SCIP. Computational experiments indicates the potential of the approach. T3 - ZIB-Report - 09-23 KW - mixed integer quadratically constrained programming KW - constraint integer programming KW - convex relaxation KW - nonconvex Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11371 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Nonlinear pseudo-Boolean optimization: relaxation or propagation? N2 - Pseudo-Boolean problems lie on the border between satisfiability problems, constraint programming, and integer programming. In particular, nonlinear constraints in pseudo-Boolean optimization can be handled by methods arising in these different fields: One can either linearize them and work on a linear programming relaxation or one can treat them directly by propagation. In this paper, we investigate the individual strengths of these approaches and compare their computational performance. Furthermore, we integrate these techniques into a branch-and-cut-and-propagate framework, resulting in an efficient nonlinear pseudo-Boolean solver. T3 - ZIB-Report - 09-11 KW - Pseudo-Boolean KW - constraint integer programming KW - linear relaxation KW - separation algorithm KW - domain propagation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11232 SN - 1438-0064 ER - TY - GEN A1 - Heinz, Stefan A1 - Stephan, Rüdiger A1 - Schlechte, Thomas T1 - Solving Steel Mill Slab Problems with Branch and Price N2 - The steel mill slab design problem from the CSPLib is a binpacking problem that is motivated by an application of the steel industry and that has been widely studied in the constraint programming community. Recently, several people proposed new models and methods to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called multiple knapsack problem with color constraints, originated from the same industrial problem, were discussed in the integer programming community. In particular, a simple integer programming for this problem has been given by Forrest et al. [3]. The aim of this paper is to bring these different studies together. Moreover, we adopt the model of [3] for the steel mill slab problem. Using a state of the art integer program solver, this model is capable to solve all instances of the steel mill slab library, mostly in less than one second, to optimality. We improved, thereby, the solution value of 76 instances. T3 - ZIB-Report - 09-14 KW - steel mill slab problem KW - branch-and-price KW - integer programming Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11260 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: Techniques and Applications N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-43 KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10950 SN - 1438-0064 ER - TY - GEN A1 - Arnold, Thomas A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Henrion, René A1 - Grötschel, Martin A1 - Koch, Thorsten A1 - Tischendorf, Caren A1 - Römisch, Werner ED - Deuflhard, Peter ED - Grötschel, Martin ED - Hömberg, Dietmar ED - Horst, Ulrich ED - Kramer, Jürg ED - Mehrmann, Volker ED - Polthier, Konrad ED - Schmidt, Frank ED - Schütte, Christof ED - Skutella, Martin ED - Sprekels, Jürgen T1 - A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs T2 - MATHEON - Mathematics for Key Technologies N2 - Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de Y1 - 2014 U6 - https://doi.org/10.4171/137 VL - 1 SP - 135 EP - 146 PB - European Mathematical Society ER - TY - CHAP A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Experiments with Conflict Analysis in Mixed Integer Programming T2 - Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017 N2 - The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving. Y1 - 2017 U6 - https://doi.org/10.1007/978-3-319-59776-8_17 VL - 10335 SP - 211 EP - 222 PB - Springer ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael ED - IEEE, T1 - Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update T2 - IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel & Distributed Processing Symposium Workshops Y1 - 2014 SN - 978-1-4799-4117-9 U6 - https://doi.org/10.1109/IPDPSW.2014.174 SP - 1552 EP - 1561 PB - IEEE Computer Society CY - Washington, DC, USA ER - TY - GEN A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-based primal heuristics for mixed integer programming N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time. T3 - ZIB-Report - 15-26 KW - mixed-integer programming, large neighborhood search, primal heuristics, domain propagation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55518 SN - 1438-0064 ER -