TY - GEN A1 - Heinz, Stefan A1 - Krumke, Sven A1 - Megow, Nicole A1 - Rambau, Jörg A1 - Tuchscherer, Andreas A1 - Vredeveld, Tjark T1 - The Online Target Date Assignment Problem N2 - Many online problems encountered in real-life involve a two-stage decision process: upon arrival of a new request, an irrevocable first-stage decision (the assignment of a specific resource to the request) must be made immediately, while in a second stage process, certain ``subinstances'' (that is, the instances of all requests assigned to a particular resource) can be solved to optimality (offline) later. We introduce the novel concept of an \emph{Online Target Date Assignment Problem} (\textsc{OnlineTDAP}) as a general framework for online problems with this nature. Requests for the \textsc{OnlineTDAP} become known at certain dates. An online algorithm has to assign a target date to each request, specifying on which date the request should be processed (e.\,g., an appointment with a customer for a washing machine repair). The cost at a target date is given by the \emph{downstream cost}, the optimal cost of processing all requests at that date w.\,r.\,t.\ some fixed downstream offline optimization problem (e.\,g., the cost of an optimal dispatch for service technicians). We provide general competitive algorithms for the \textsc{OnlineTDAP} independently of the particular downstream problem, when the overall objective is to minimize either the sum or the maximum of all downstream costs. As the first basic examples, we analyze the competitive ratios of our algorithms for the par ticular academic downstream problems of bin-packing, nonpreemptive scheduling on identical parallel machines, and routing a traveling salesman. T3 - ZIB-Report - 05-61 KW - Online Algorithms KW - Online Target Date Assignment Problem Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8945 ER - TY - GEN A1 - Heinz, Stefan A1 - Kaibel, Volker A1 - Peinhardt, Matthias A1 - Rambau, Jörg A1 - Tuchscherer, Andreas T1 - LP-Based Local Approximation for Markov Decision Problems N2 - The standard computational methods for computing the optimal value functions of Markov Decision Problems (MDP) require the exploration of the entire state space. This is practically infeasible for applications with huge numbers of states as they arise, e.\,g., from modeling the decisions in online optimization problems by MDPs. Exploiting column generation techniques, we propose and apply an LP-based method to determine an $\varepsilon$-approximation of the optimal value function at a given state by inspecting only states in a small neighborhood. In the context of online optimization problems, we use these methods in order to evaluate the quality of concrete policies with respect to given initial states. Moreover, the tools can also be used to obtain evidence of the impact of single decisions. This way, they can be utilized in the design of policies. T3 - ZIB-Report - 06-20 KW - Markov decision problem KW - linear programming KW - column generation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9131 ER - TY - CHAP A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten ED - Perron, Laurent ED - Trick, Michael T1 - Counting Solutions of Integer Programs Using Unrestricted Subtree Detection T2 - Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008 Y1 - 2008 UR - http://opus.kobv.de/zib/volltexte/2008/1092/ VL - 5015 SP - 278 EP - 282 PB - Springer ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Computational Aspects of Infeasibility Analysis in Mixed Integer Programming N2 - The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress. T3 - ZIB-Report - 19-54 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74962 SN - 1438-0064 ER - TY - JOUR A1 - Berthold, Timo A1 - Farmer, James A1 - Heinz, Stefan A1 - Perregaard, Michael T1 - Parallelization of the FICO Xpress Optimizer JF - Optimization Methods and Software N2 - Computing hardware has mostly thrashed out the physical limits for speeding up individual computing cores. Consequently, the main line of progress for new hardware is growing the number of computing cores within a single CPU. This makes the study of efficient parallelization schemes for computation-intensive algorithms more and more important. A natural precondition to achieving reasonable speedups from parallelization is maintaining a high workload of the available computational resources. At the same time, reproducibility and reliability are key requirements for software that is used in industrial applications. In this paper, we present the new parallelization concept for the state-of-the-art MIP solver FICO Xpress-Optimizer. MIP solvers like Xpress are expected to be deterministic. This inevitably results in synchronization latencies which render the goal of a satisfying workload a challenge in itself. We address this challenge by following a partial information approach and separating the concepts of simultaneous tasks and independent threads from each other. Our computational results indicate that this leads to a much higher CPU workload and thereby to an improved, almost linear, scaling on modern high-performance CPUs. As an added value, the solution path that Xpress takes is not only deterministic in a fixed environment, but also, to a certain extent, thread-independent. This paper is an extended version of Berthold et al. [Parallelization of the FICO Xpress-Optimizer, in Mathematical Software – ICMS 2016: 5th International Conference, G.-M. Greuel, T. Koch, P. Paule, and A. Sommere, eds., Springer International Publishing, Berlin, 2016, pp. 251–258] containing more detailed technical descriptions, illustrative examples and updated computational results. Y1 - 2018 U6 - https://doi.org/10.1080/10556788.2017.1333612 VL - 33 IS - 3 SP - 518 EP - 529 ER - TY - CHAP A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming T2 - Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019 N2 - Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part. Y1 - 2019 U6 - https://doi.org/10.1007/978-3-030-19212-9_6 VL - 11494 SP - 84 EP - 94 PB - Springer ER - TY - JOUR A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-driven fix-and-propagate heuristics for mixed integer programming JF - Mathematical Programming Computation N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 % of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time. Y1 - 2019 U6 - https://doi.org/10.1007/s12532-019-00159-1 VL - 11 IS - 4 SP - 675 EP - 702 PB - Springer CY - Berlin Heidelberg ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming N2 - Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part. T3 - ZIB-Report - 18-57 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71170 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Analyzing the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 13-08 KW - mixed-integer quadratically constrained programming KW - mixed-integer programming KW - branch-and-cut KW - nonconvex KW - global optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17754 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - On the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 11-01 KW - MIQCP KW - MIP KW - mixed-integer quadratically constrained programming KW - computational KW - nonconvex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11998 ER -