TY - GEN A1 - Fackeldey, Konstantin A1 - Röblitz, Susanna A1 - Scharkoi, Olga A1 - Weber, Marcus T1 - Soft Versus Hard Metastable Conformations in Molecular Simulations N2 - Particle methods have become indispensible in conformation dynamics to compute transition rates in protein folding, binding processes and molecular design, to mention a few. Conformation dynamics requires at a decomposition of a molecule's position space into metastable conformations. In this paper, we show how this decomposition can be obtained via the design of either ``soft'' or ``hard'' molecular conformations. We show, that the soft approach results in a larger metastabilitiy of the decomposition and is thus more advantegous. This is illustrated by a simulation of Alanine Dipeptide. T3 - ZIB-Report - 11-27 KW - Proteins, Conformation Space, Meshfree Methods Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13189 ER - TY - GEN A1 - Fackeldey, Konstantin T1 - Coupling Meshbased and Meshfree Methods by a Transfer Operator Approach N2 - In contrast to the well known meshbased methods like the finite element method, meshfree methods do not rely on a mesh. However besides their great applicability, meshfree methods are rather time consuming. Thus, it seems favorable to combine both methods, by using meshfree methods only in a small part of the domain, where a mesh is disadvantageous, and a meshbased method for the rest of the domain. We motivate, that this coupling between the two simulation techniques can be considered as saddle point problem and show the stability of this coupling. Thereby a novel transfer operator is introduced, which interacts in the transition zone, where both methods coexist. T3 - ZIB-Report - 10-12 KW - Gitterlose Methoden KW - inf-sup-Bedingung KW - Kopplung KW - meshfree KW - meshbased KW - inf-sup-Condition Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11755 SN - 1438-0064 ER - TY - GEN A1 - Weber, Marcus A1 - Fackeldey, Konstantin T1 - Computing the Minimal Rebinding Effect Included in a Given Kinetics N2 - The rebinding effect is a phenomenon which occurs when observing a ligand-receptor binding process. On the macro scale this process comprises the Markov property. This Makovian view is spoiled when switching to the atomistic scale of a binding process. We therefore suggest a model which accurately describes the rebinding effect on the atomistic scale by allowing ''intermediate'' bound states. This allows us to define an indicator for the magnitude of rebinding and to formulate an optimization problem. The results form our examples show good agreement with data form laboratory. T3 - ZIB-Report - 13-12 KW - Rebinding KW - Molecular Kinetics KW - Conformation Dynamics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17796 SN - 1438-0064 ER - TY - GEN A1 - Lie, Han Cheng A1 - Fackeldey, Konstantin A1 - Weber, Marcus T1 - A square root approximation of transition rates for a Markov State Model N2 - Trajectory- or mesh-based methods for analyzing the dynamical behavior of large molecules tend to be impractical due to the curse of dimensionality - their computational cost increases exponentially with the size of the molecule. We propose a method to break the curse by a novel square root approximation of transition rates, Monte Carlo quadrature and a discretization approach based on solving linear programs. With randomly sampled points on the molecular energy landscape and randomly generated discretizations of the molecular configuration space as our initial data, we construct a matrix describing the transition rates between adjacent discretization regions. This transition rate matrix yields a Markov State Model of the molecular dynamics. We use Perron cluster analysis and coarse-graining techniques in order to identify metastable sets in configuration space and approximate the transition rates between the metastable sets. Application of our method to a simple energy landscape on a two-dimensional configuration space provides proof of concept and an example for which we compare the performance of different discretizations. We show that the computational cost of our method grows only polynomially with the size of the molecule. However, finding discretizations of higher-dimensional configuration spaces in which metastable sets can be identified remains a challenge. T3 - ZIB-Report - 13-43 KW - Markov State Models KW - Markov chains KW - meshfree methods KW - metastability KW - Voronoi KW - linear programming Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42195 SN - 1438-0064 ER - TY - GEN A1 - Nielsen, Adam A1 - Fackeldey, Konstantin A1 - Weber, Marcus T1 - On a Generalized Transfer Operator N2 - We introduce a generalized operator for arbitrary stochastic processes by using a pre-kernel, which is a generalization of the Markov kernel. For deterministic processes, such an operator is already known as the Frobenius-Perron operator, which is defined for a large class of measures. For Markov processes, there exists transfer operators being only well defined for stationary measures in $L^2$. Our novel generalized transfer operator is well defined for arbitrary stochastic processes, in particular also for deterministic ones. We can show that this operator is acting on $L^1$. For stationary measures, this operator is also an endomorphism of $L^2$ and, therefore, allows for a mathematical analysis in Hilbert spaces. T3 - ZIB-Report - 13-74 KW - Transfer Operator KW - Pre Kernel KW - Perron Frobenius Generalization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-43162 SN - 1438-0064 ER - TY - JOUR A1 - Fackeldey, Konstantin A1 - Koltai, Peter A1 - Nevir, Peter A1 - Rust, Henning A1 - Schild, Axel A1 - Weber, Marcus T1 - From metastable to coherent sets - Time-discretization schemes JF - Chaos: An Interdisciplinary Journal of Nonlinear Science N2 - In this article, we show that these well-established spectral algorithms (like PCCA+, Perron Cluster Cluster Analysis) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-time-discretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application. Y1 - 2019 U6 - https://doi.org/10.1063/1.5058128 VL - 29 SP - 012101 EP - 012101 ER - TY - JOUR A1 - Reuter, Bernhard A1 - Fackeldey, Konstantin A1 - Weber, Marcus T1 - Generalized Markov modeling of nonreversible molecular kinetics JF - The Journal of Chemical Physics N2 - Markov state models are to date the gold standard for modeling molecular kinetics since they enable the identification and analysis of metastable states and related kinetics in a very instructive manner. The state-of-the-art Markov state modeling methods and tools are very well developed for the modeling of reversible processes in closed equilibrium systems. On the contrary, they are largely not well suited to deal with nonreversible or even nonautonomous processes of nonequilibrium systems. Thus, we generalized the common Robust Perron Cluster Cluster Analysis (PCCA+) method to enable straightforward modeling of nonequilibrium systems as well. The resulting Generalized PCCA (G-PCCA) method readily handles equilibrium as well as nonequilibrium data by utilizing real Schur vectors instead of eigenvectors. This is implemented in the G-PCCA algorithm that enables the semiautomatic coarse graining of molecular kinetics. G-PCCA is not limited to the detection of metastable states but also enables the identification and modeling of cyclic processes. This is demonstrated by three typical examples of nonreversible systems. Y1 - 2019 U6 - https://doi.org/10.1063/1.5064530 VL - 17 IS - 150 SP - 174103 ER - TY - JOUR A1 - Ernst, Natalia A1 - Fackeldey, Konstantin A1 - Volkamer, Andrea A1 - Opatz, Oliver A1 - Weber, Marcus T1 - Computation of temperature-dependent dissociation rates of metastable protein–ligand complexes JF - Molecular Simulation N2 - Molecular simulations are often used to analyse the stability of protein–ligand complexes. The stability can be characterised by exit rates or using the exit time approach, i.e. by computing the expected holding time of the complex before its dissociation. However determining exit rates by straightforward molecular dynamics methods can be challenging for stochastic processes in which the exit event occurs very rarely. Finding a low variance procedure for collecting rare event statistics is still an open problem. In this work we discuss a novel method for computing exit rates which uses results of Robust Perron Cluster Analysis (PCCA+). This clustering method gives the possibility to define a fuzzy set by a membership function, which provides additional information of the kind ‘the process is being about to leave the set’. Thus, the derived approach is not based on the exit event occurrence and, therefore, is also applicable in case of rare events. The novel method can be used to analyse the temperature effect of protein–ligand systems through the differences in exit rates, and, thus, open up new drug design strategies and therapeutic applications. Y1 - 2019 U6 - https://doi.org/10.1080/08927022.2019.1610949 VL - 45 IS - 11 SP - 904 EP - 911 ER - TY - GEN A1 - Fackeldey, Konstantin A1 - Sikorski, Alexander A1 - Weber, Marcus T1 - Spectral Clustering for Non-reversible Markov Chains N2 - Spectral clustering methods are based on solving eigenvalue problems for the identification of clusters, e.g. the identification of metastable subsets of a Markov chain. Usually, real-valued eigenvectors are mandatory for this type of algorithms. The Perron Cluster Analysis (PCCA+) is a well-known spectral clustering method of Markov chains. It is applicable for reversible Markov chains, because reversibility implies a real-valued spectrum. We also extend this spectral clustering method to non-reversible Markov chains and give some illustrative examples. The main idea is to replace the eigenvalue problem by a real-valued Schur decomposition. By this extension non-reversible Markov chains can be analyzed. Furthermore, the chains do not need to have a positive stationary distribution. In addition to metastabilities, dominant cycles and sinks can also be identified. This novel method is called GenPCCA (i.e. Generalized PCCA), since it includes the case of non reversible processes. We also apply the method to real world eye tracking data. T3 - ZIB-Report - 18-48 KW - spectral clustering KW - Markov chain KW - Schur decomposition KW - non-reversible Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70218 SN - 1438-0064 ER - TY - JOUR A1 - Fackeldey, Konstantin A1 - Sikorski, Alexander A1 - Weber, Marcus T1 - Spectral Clustering for Non-Reversible Markov Chains JF - Computational and Applied Mathematics N2 - Spectral clustering methods are based on solving eigenvalue problems for the identification of clusters, e.g., the identification of metastable subsets of a Markov chain. Usually, real-valued eigenvectors are mandatory for this type of algorithms. The Perron Cluster Analysis (PCCA+) is a well-known spectral clustering method of Markov chains. It is applicable for reversible Markov chains, because reversibility implies a real-valued spectrum. We also extend this spectral clustering method to non-reversible Markov chains and give some illustrative examples. The main idea is to replace the eigenvalue problem by a real-valued Schur decomposition. By this extension non-reversible Markov chains can be analyzed. Furthermore, the chains do not need to have a positive stationary distribution. In addition to metastabilities, dominant cycles and sinks can also be identified. This novel method is called GenPCCA (i.e., generalized PCCA), since it includes the case of non-reversible processes. We also apply the method to real-world eye-tracking data. KW - Spectral clustering KW - Markov chain KW - Non-reversible KW - Schur decomposition KW - GenPCCA Y1 - 2018 U6 - https://doi.org/https://doi.org/10.1007/s40314-018-0697-0 VL - 37 IS - 5 SP - 6376 EP - 6391 ER - TY - JOUR A1 - Lie, Han Cheng A1 - Fackeldey, Konstantin A1 - Weber, Marcus T1 - A Square Root Approximation of Transition Rates for a Markov State Model JF - SIAM. J. Matrix Anal. Appl. Y1 - 2013 U6 - https://doi.org/10.1137/120899959 VL - 34 IS - 2 SP - 738 EP - 756 ER - TY - JOUR A1 - Scharkoi, Olga A1 - Fackeldey, Konstantin A1 - Merkulow, Igor A1 - Andrae, Karsten A1 - Weber, Marcus A1 - Nehls, Irene T1 - Conformational Analysis of Alternariol on the Quantum Level JF - J. Mol. Model. Y1 - 2013 U6 - https://doi.org/10.1007/s00894-013-1803-2 VL - 19 IS - 6 SP - 2567 EP - 2572 ER - TY - GEN A1 - Bujotzek, Alexander A1 - Schütt, Ole A1 - Nielsen, Adam A1 - Fackeldey, Konstantin A1 - Weber, Marcus T1 - Efficient Conformational Analysis by Partition-of-Unity Coupling T2 - Math Chem N2 - Obtaining a sufficient sampling of conformational space is a common problem in molecular simulation. We present the implementation of an umbrella-like adaptive sampling approach based on function-based meshless discretization of conformational space that is compatible with state of the art molecular dynamics code and that integrates an eigenvector-based clustering approach for conformational analysis and the computation of inter-conformational transition rates. The approach is applied to three example systems, namely n-pentane, alanine dipeptide, and a small synthetic host-guest system, the latter two including explicitly modeled solvent. T3 - ZIB-Report - 13-58 KW - Markov State Models KW - Meshfree KW - Molecular Simulation KW - Partition of Unity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42570 SN - 1438-0064 ER - TY - GEN A1 - Weber, Marcus A1 - Fackeldey, Konstantin A1 - Schütte, Christof T1 - Set-free Markov State Building N2 - Molecular dynamics (MD) simulations face challenging problems since the timescales of interest often are much longer than what is possible to simulate and even if sufficiently long simulation are possible the complex nature of the resulting simulation data makes interpretation difficult. Markov State Models (MSMs) help to overcome these problems by making experimentally relevant timescales accessible via coarse grained representations that also allows for convenient interpretation. However, standard set-based MSMs exhibit some caveats limiting their approximation quality and statistical significance. One of the main caveats results from the fact that typical MD trajectories repeatedly re-cross the boundary between the sets used to build the MSM which causes statistical bias in estimating the transition probabilities between these sets. In this article, we present a set-free approach to MSM building utilizing smooth overlapping ansatz functions instead of sets and an adaptive refinement approach. This kind of meshless discretization helps to overcome the recrossing problem and yields an adaptive refinement procedure that allows to improve the quality of the model while exploring state space and inserting new ansatz functions into the MSM. T3 - ZIB-Report - 17-10 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62167 SN - 1438-0064 ER - TY - CHAP A1 - Durmaz, Vedat A1 - Fackeldey, Konstantin A1 - Weber, Marcus ED - Mode, Ch. T1 - A rapidly Mixing Monte Carlo Method for the Simulation of Slow Molecular Processes T2 - Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science Y1 - 2011 PB - InTech ER - TY - CHAP A1 - Fackeldey, Konstantin A1 - Krause, Dorian A1 - Krause, Rolf T1 - Quadrature and Implementation of the Weak Coupling Method T2 - MMM 2008: Proceedings of the 4th International Conference on Multiscale Materials Modelling, 27-31 October 2008, Tallahassee, Fla. Y1 - 2008 SP - 62 EP - 65 ER - TY - CHAP A1 - Fackeldey, Konstantin A1 - Krause, Dorian A1 - Krause, Rolf T1 - Weak Coupling Algorithms in Multiscale Simulations T2 - Proceedings of the third Inter. Confer. on Comp. Meth. for Coupled Problems in Science and Engrg Y1 - 2009 SP - 1023pp ER - TY - CHAP A1 - Fackeldey, Konstantin A1 - Krause, Dorian A1 - Krause, Rolf ED - Griebel, Michael ED - Schweitzer, M. T1 - Numerical Validation of Constraints Based Multiscale Methods T2 - Lecture Notes in Computational Science and Engineering Y1 - 2010 SP - 141 EP - 154 ER - TY - JOUR A1 - Fackeldey, Konstantin A1 - Krause, Dorian A1 - Krause, Rolf A1 - Lenzen, Christoph T1 - Coupling Molecular Dynamics and Continua with Weak Constraints JF - SIAM Multiscale Model. Simul. Y1 - 2011 U6 - https://doi.org//10.1137/100782097 N1 - also as MATHEON Preprint VL - 9 SP - 1459 EP - 1494 ER - TY - CHAP A1 - Fackeldey, Konstantin A1 - Krause, Rolf A1 - Schweitzer, M. ED - Griebel, Michael ED - Schweitzer, M. T1 - Stability of Energy Transfer in the Weak Coupling Method T2 - Meshfree Methods for Partial Differential Equations IV Y1 - 2008 VL - 65 SP - 111 EP - 121 ER -