TY - GEN A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Ebell, Gino A1 - Ehrig, Karsten A1 - Heyn, Andreas A1 - Meinel, Dietmar A1 - Prohaska, Steffen T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben N2 - Kurzfassung. Durch die Alkalität des Betons wird Betonstahl dauerhaft vor Korrosion geschützt. Infolge von Chlorideintrag kann dieser Schutz nicht länger aufrechterhalten werden und führt zu Lochkorrosion. Die zerstörungsfreie Prüfung von Stahlbetonproben mit 3D-CT bietet die Möglichkeit, eine Probe mehrfach gezielt vorzuschädigen und den Korrosionsfortschritt zu untersuchen. Zur Quantifizierung des Schädigungsgrades müssen die bei dieser Untersuchung anfallenden großen Bilddaten mit Bildverarbeitungsmethoden ausgewertet werden. Ein wesentlicher Schritt dabei ist die Segmentierung der Bilddaten, bei der zwischen Korrosionsprodukt (Rost), Betonstahl (BSt), Beton, Rissen, Poren und Umgebung unterschieden werden muss. Diese Segmentierung bildet die Grundlage für statistische Untersuchungen des Schädigungsfortschritts. Hierbei sind die Änderung der BSt-Geometrie, die Zunahme von Korrosionsprodukten und deren Veränderung über die Zeit sowie ihrer räumlichen Verteilung in der Probe von Interesse. Aufgrund der Größe der CT-Bilddaten ist eine manuelle Segmentierung nicht durchführbar, so dass automatische Verfahren unabdingbar sind. Dabei ist insbesondere die Segmentierung der Korrosionsprodukte in den Bilddaten ein schwieriges Problem. Allein aufgrund der Grauwerte ist eine Zuordnung nahezu unmöglich, denn die Grauwerte von Beton und Korrosionsprodukt unterscheiden sich kaum. Eine formbasierte Suche ist nicht offensichtlich, da die Korrosionsprodukte in Beton diffuse Formen haben. Allerdings lässt sich Vorwissen über die Ausbreitung der Korrosionsprodukte nutzen. Sie bilden sich in räumlicher Nähe des BSt (in Bereichen vorheriger Volumenabnahme des BSt), entlang von Rissen sowie in Porenräumen, die direkt am BSt und in dessen Nahbereich liegen. Davon ausgehend wird vor der Korrosionsprodukterkennung zunächst eine BSt-Volumen-, Riss- und Porenerkennung durchgeführt. Dieser in der Arbeit näher beschriebene Schritt erlaubt es, halbautomatisch Startpunkte (Seed Points) für die Korrosionsprodukterkennung zu finden. Weiterhin werden verschiedene in der Bildverarbeitung bekannte Algorithmen auf ihre Eignung untersucht werden. T3 - ZIB-Report - 14-24 KW - Beton KW - Korrosionserkennung KW - Bildverarbeitung KW - Computertomografie KW - concrete KW - corrosiondetection KW - image processing KW - computed tomography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50912 SN - 1438-0064 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Ligand Excluded Surface: A New Type of Molecular Surface JF - IEEE Transactions on Visualization and Computer Graphics N2 - The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes – including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules. Y1 - 2014 U6 - https://doi.org/10.1109/TVCG.2014.2346404 VL - 20 IS - 12 SP - 2486 EP - 2495 ER - TY - GEN A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Ligand Excluded Surface: A New Type of Molecular Surface N2 - The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes – including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules. T3 - ZIB-Report - 14-27 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-51194 SN - 1438-0064 ER - TY - GEN A1 - Redemann, Stefanie A1 - Weber, Britta A1 - Möller, Marit A1 - Verbavatz, Jean-Marc A1 - Hyman, Anthony A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Müller-Reichert, Thomas T1 - The Segmentation of Microtubules in Electron Tomograms Using Amira T2 - Mitosis: Methods and Protocols Y1 - 2014 U6 - https://doi.org/10.1007/978-1-4939-0329-0_12 SP - 261 EP - 278 PB - Springer ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage N2 - Introduction – Many biological structures show recurring tiling patterns on one structural level or the other. Current image acquisition techniques are able to resolve those tiling patterns to allow quantitative analyses. The resulting image data, however, may contain an enormous number of elements. This renders manual image analysis infeasible, in particular when statistical analysis is to be conducted, requiring a larger number of image data to be analyzed. As a consequence, the analysis process needs to be automated to a large degree. In this paper, we describe a multi-step image segmentation pipeline for the automated segmentation of the calcified cartilage into individual tesserae from computed tomography images of skeletal elements of stingrays. Methods – Besides applying state-of-the-art algorithms like anisotropic diffusion smoothing, local thresholding for foreground segmentation, distance map calculation, and hierarchical watershed, we exploit a graph-based representation for fast correction of the segmentation. In addition, we propose a new distance map that is computed only in the plane that locally best approximates the calcified cartilage. This distance map drastically improves the separation of individual tesserae. We apply our segmentation pipeline to hyomandibulae from three individuals of the round stingray (Urobatis halleri), varying both in age and size. Results – Each of the hyomandibula datasets contains approximately 3000 tesserae. To evaluate the quality of the automated segmentation, four expert users manually generated ground truth segmentations of small parts of one hyomandibula. These ground truth segmentations allowed us to compare the segmentation quality w.r.t. individual tesserae. Additionally, to investigate the segmentation quality of whole skeletal elements, landmarks were manually placed on all tesserae and their positions were then compared to the segmented tesserae. With the proposed segmentation pipeline, we sped up the processing of a single skeletal element from days or weeks to a few hours. T3 - ZIB-Report - 17-62 KW - micro-CT KW - image segmentation KW - 2D distance map KW - hierarchical watershed KW - stingray KW - tesserae KW - biological tilings KW - Amira Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65785 SN - 1438-0064 ER - TY - CHAP A1 - Klindt, Marco A1 - Prohaska, Steffen A1 - Baum, Daniel A1 - Hege, Hans-Christian ED - Arnold, David ED - Kaminski, Jaime ED - Niccolucci, Franco ED - Stork, Andre T1 - Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition T2 - VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers Y1 - 2012 UR - http://diglib.eg.org/EG/DL/PE/VAST/VAST12S/025-028.pdf U6 - https://doi.org/10.2312/PE/VAST/VAST12S/025-028 SP - 25 EP - 28 PB - Eurographics Association CY - Brighton, UK ER - TY - CHAP A1 - Klindt, Marco A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - iCon.text – a customizable iPad app for kiosk applications in museum exhibitions T2 - EVA 2012 Berlin Y1 - 2012 SP - 150 EP - 155 PB - Gesellschaft zur Förderung angewandter Informatik e.V. CY - Volmerstraße 3, 12489 Berlin ER - TY - CHAP A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Bondar, Ana-Nicoleta A1 - Hege, Hans-Christian T1 - Dynamic Channels in Biomolecular Systems: Path Analysis and Visualization T2 - Proceedings of IEEE Symposium on Biological Data Visualization (biovis’12) Y1 - 2012 U6 - https://doi.org/10.1109/BioVis.2012.6378599 SP - 99 EP - 106 ER - TY - CHAP A1 - Schmidt-Ehrenberg, Johannes A1 - Baum, Daniel A1 - Hege, Hans-Christian ED - J. Moorhead, Robert ED - Gross, Markus ED - I. Joy, Kenneth T1 - Visualizing Dynamic Molecular Conformations T2 - Proceedings of IEEE Visualization 2002 Y1 - 2002 U6 - https://doi.org/10.1109/VISUAL.2002.1183780 SP - 235 EP - 242 PB - IEEE Computer Society Press CY - Boston MA, USA ER - TY - JOUR A1 - Rigort, Alexander A1 - Günther, David A1 - Hegerl, Reiner A1 - Baum, Daniel A1 - Weber, Britta A1 - Prohaska, Steffen A1 - Medalia, Ohad A1 - Baumeister, Wolfgang A1 - Hege, Hans-Christian T1 - Automated segmentation of electron tomograms for a quantitative description of actin filament networks JF - Journal of Structural Biology Y1 - 2012 U6 - https://doi.org/10.1016/j.jsb.2011.08.012 VL - 177 SP - 135 EP - 144 ER - TY - JOUR A1 - Schmidt-Ehrenberg, Johannes A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Visually stunning - Molecular conformations JF - The Biochemist Y1 - 2001 VL - 23 IS - 5 SP - 22 EP - 26 ER - TY - JOUR A1 - Kratz, Andrea A1 - Baum, Daniel A1 - Hotz, Ingrid T1 - Anisotropic Sampling of Planar and Two-Manifold Domains for Texture Generation and Glyph Distribution JF - Transactions on Visualization and Computer Graphics (TVCG) Y1 - 2013 U6 - https://doi.org/10.1109/TVCG.2013.83 VL - 19 SP - 1782 EP - 1794 ER - TY - THES A1 - Runge, Daniel T1 - Algorithms and Methods for the Visualization of Molecular Surfaces and Interfaces Y1 - 1999 ER - TY - CHAP A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Kalbe, Ute A1 - Witt, Karl Josef T1 - Automatic Extraction and Analysis of Realistic Pore Structures from µCT Data for Pore Space Characterization of Graded Soil T2 - Proceedings of the 6th International Conference on Scour and Erosion (ICSE-6) Y1 - 2012 SP - 345 EP - 352 ER - TY - JOUR A1 - Weber, Britta A1 - Greenan, Garrett A1 - Prohaska, Steffen A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Müller-Reichert, Thomas A1 - Hyman, Anthony A1 - Verbavatz, Jean-Marc T1 - Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos JF - Journal of Structural Biology Y1 - 2012 UR - http://www.sciencedirect.com/science/article/pii/S1047847711003509 U6 - https://doi.org/10.1016/j.jsb.2011.12.004 VL - 178 IS - 2 SP - 129 EP - 138 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hege, Hans-Christian T1 - Voronoi-Based Extraction and Visualization of Molecular Paths JF - IEEE Transactions on Visualization and Computer Graphics Y1 - 2011 U6 - https://doi.org/10.1109/TVCG.2011.259 VL - 17 IS - 12 SP - 2025 EP - 2034 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - Accelerated Visualization of Dynamic Molecular Surfaces JF - Comput. Graph. Forum Y1 - 2010 U6 - https://doi.org/10.1111/j.1467-8659.2009.01693.x VL - 29 SP - 943 EP - 952 ER - TY - JOUR A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Bondar, Ana-Nicoleta A1 - Hege, Hans-Christian T1 - Exploring cavity dynamics in biomolecular systems JF - BMC Bioinformatics Y1 - 2013 U6 - https://doi.org/10.1186/1471-2105-14-S19-S5 VL - 14 ET - (Suppl 19):S5 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Wiebel, Alexander A1 - Prohaska, Steffen A1 - Hege, Hans-Christian ED - Bremer, Peer-Timo ED - Hotz, Ingrid ED - Pascucci, Valerio ED - Peikert, Ronald T1 - Definition, Extraction, and Validation of Pore Structures in Porous Materials BT - Theory, Algorithms, and Applications T2 - Topological Methods in Data Analysis and Visualization III Y1 - 2014 U6 - https://doi.org/10.1007/978-3-319-04099-8_15 SP - 235 EP - 248 PB - Springer ER - TY - JOUR A1 - Titschack, Jürgen A1 - Baum, Daniel A1 - De Pol-Holz, Ricardo A1 - López Correa, Matthias A1 - Forster, Nina A1 - Flögel, Sascha A1 - Hebbeln, Dierk A1 - Freiwald, André T1 - Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs JF - Sedimentology Y1 - 2015 U6 - https://doi.org/10.1111/sed.12206 VL - 62 IS - 7 SP - 1873 EP - 1898 PB - Wiley ER - TY - JOUR A1 - Cournia, Zoe A1 - Allen, Toby W. A1 - Andricioaei, Ioan A1 - Antonny, Bruno A1 - Baum, Daniel A1 - Brannigan, Grace A1 - Buchete, Nicolae-Viorel A1 - Deckman, Jason T. A1 - Delemotte, Lucie A1 - del Val, Coral A1 - Friedman, Ran A1 - Gkeka, Paraskevi A1 - Hege, Hans-Christian A1 - Hénin, Jérôme A1 - Kasimova, Marina A. A1 - Kolocouris, Antonios A1 - Klein, Michael L. A1 - Khalid, Syma A1 - Lemieux, Joanne A1 - Lindow, Norbert A1 - Roy, Mahua A1 - Selent, Jana A1 - Tarek, Mounir A1 - Tofoleanu, Florentina A1 - Vanni, Stefano A1 - Urban, Sinisa A1 - Wales, David J. A1 - Smith, Jeremy C. A1 - Bondar, Ana-Nicoleta T1 - Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory JF - Journal of Membrane Biology Y1 - 2015 U6 - https://doi.org/10.1007/s00232-015-9802-0 VL - 248 IS - 4 SP - 611 EP - 640 ER - TY - JOUR A1 - Färber, Claudia A1 - Titschack, Jürgen A1 - Schönberg, Christine H. L. A1 - Ehrig, Karsten A1 - Boos, Karin A1 - Baum, Daniel A1 - Illerhaus, Bernd A1 - Asgaard, Ulla A1 - Bromley, Richard G. A1 - Freiwald, André A1 - Wisshak, Max T1 - Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography JF - Biogeosciences N2 - Biological erosion is a key process for the recycling of carbonate and the formation of calcareous sediments in the oceans. Experimental studies showed that bioerosion is subject to distinct temporal variability, but previous long-term studies were restricted to tropical waters. Here, we present results from a 14-year bioerosion experiment that was carried out along the rocky limestone coast of the island of Rhodes, Greece, in the Eastern Mediterranean Sea, in order to monitor the pace at which bioerosion affects carbonate substrate and the sequence of colonisation by bioeroding organisms. Internal macrobioerosion was visualised and quantified by micro-computed tomography and computer-algorithm-based segmentation procedures. Analysis of internal macrobioerosion traces revealed a dominance of bioeroding sponges producing eight types of characteristic Entobia cavity networks, which were matched to five different clionaid sponges by spicule identification in extracted tissue. The morphology of the entobians strongly varied depending on the species of the producing sponge, its ontogenetic stage, available space, and competition by other bioeroders. An early community developed during the first 5 years of exposure with initially very low macrobioerosion rates and was followed by an intermediate stage when sponges formed large and more diverse entobians and bioerosion rates increased. After 14 years, 30 % of the block volumes were occupied by boring sponges, yielding maximum bioerosion rates of 900 g m^−2 yr^−1. A high spatial variability in macrobioerosion prohibited clear conclusions about the onset of macrobioerosion equilibrium conditions. This highlights the necessity of even longer experimental exposures and higher replication at various factor levels in order to better understand and quantify temporal patterns of macrobioerosion in marine carbonate environments. Y1 - 2016 U6 - https://doi.org/10.5194/bg-13-3461-2016 VL - 13 IS - 11 SP - 3461 EP - 3474 CY - http://www.biogeosciences.net/13/3461/2016/ ER - TY - GEN A1 - Kozlikova, Barbora A1 - Krone, Michael A1 - Falk, Martin A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets. T3 - ZIB-Report - 15-63 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57217 SN - 1438-0064 ER - TY - CHAP A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Ebell, Gino T1 - 3D Corrosion Detection in Time-dependent CT Images of Concrete T2 - DIR-2015 Proceedings N2 - In civil engineering, the corrosion of steel reinforcements in structural elements of concrete bares a risk of stability-reduction, mainly caused by the exposure to chlorides. 3D computed tomography (CT) reveals the inner structure of concrete and allows one to investigate the corrosion with non-destructive testing methods. To carry out such investigations, specimens with a large artificial crack and an embedded steel rebar have been manufactured. 3D CT images of those specimens were acquired in the original state. Subsequently three cycles of electrochemical pre-damaging together with CT imaging were applied. These time series have been evaluated by means of image processing algorithms to segment and quantify the corrosion products. Visualization of the results supports the understanding of how corrosion propagates into cracks and pores. Furthermore, pitting of structural elements can be seen without dismantling. In this work, several image processing and visualization techniques are presented that have turned out to be particularly effective for the visualization and segmentation of corrosion products. Their combination to a workflow for corrosion analysis is the main contribution of this work. Y1 - 2015 UR - http://www.ndt.net/events/DIR2015/app/content/Paper/36_Paetsch.pdf ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Weaver, James C. A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Segmentation of the Tessellated Mineralized Endoskeleton of Sharks and Rays T2 - Poster, Tomography for Scientific Advancement symposium (ToScA), Manchester, UK, September 3 - 4, 2015 N2 - The cartilaginous endoskeletons of sharks and rays are covered by tiles of mineralized cartilage called tesserae that enclose areas of unmineralized cartilage. These tesselated layers are vital to the growth as well as the material properties of the skeleton, providing both flexibility and strength. An understanding of the principles behind the tiling of the mineralized layer requires a quantitative analysis of shark and ray skeletal tessellation. However, since a single skeletal element comprises several thousand tesserae, manual segmentation is infeasible. We developed an automated segmentation pipeline that, working from micro-CT data, allows quantification of all tesserae in a skeletal element in less than an hour. Our segmentation algorithm relies on aspects we have learned of general tesseral morphology. In micro-CT scans, tesserae usually appear as round or star-shaped plate-like tiles, wider than deep and connected by mineralized intertesseral joints. Based on these observations, we exploit the distance map of the mineralized layer to separate individual tiles using a hierarchical watershed algorithm. Utilizing a two-dimensional distance map that measures the distance in the plane of the mineralized layer only greatly improves the segmentation. We developed post-processing techniques to quickly correct segmentation errors in regions where tesseral shape differs from the assumed shape. Evaluation of our results is done qualitatively by visual comparison with raw datasets, and quantitatively by comparison to manual segmentations. Furthermore, we generate two-dimensional abstractions of the tiling network based on the neighborhood, allowing representation of complex, biological forms as simpler geometries. We apply our newly developed techniques to the analysis of the left and right hyomandibulae of four ages of stingray enabling the first quantitative analyses of the tesseral tiling structure, while clarifying how these patterns develop across ontogeny. Y1 - 2015 ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Hosny, Ahmed A1 - Zaslansky, Paul A1 - Weaver, James C. A1 - Baum, Daniel A1 - Dean, Mason N. T1 - Understanding the Tiling Rules of the Tessellated Mineralized Endoskeleton of Sharks and Rays T2 - Poster, Euro Bio-inspired Materials 2016, Potsdam, Germany, February 22 - 25, 2016 N2 - The endoskeletons of sharks and rays are composed of an unmineralized cartilaginous core, covered in an outer layer of mineralized tiles called tesserae. The tessellated layer is vital to the growth as well as the material properties of the skeletal element, providing both flexibility and strength. However, characterizing the relationship between tesseral size and shape, and skeletal growth and mechanics is challenging because tesserae are small (a few hundred micrometers wide), anchored to the surrounding tissue in complex three-dimensional ways, and occur in huge numbers. Using a custom-made semi-automatic segmentation algorithm, we present the first quantitative and three-dimensional description of tesserae in micro-CT scans of whole skeletal elements. Our segmentation algorithm relies on aspects we have learned of general tesseral morphology. We exploit the distance map of the mineralized layer to separate individual tiles using a hierarchical watershed algorithm. Additionally, we have developed post-processing techniques to quickly correct segmentation errors. Our data reveals that the tessellation is not regular, with tesserae showing a great range of shapes, sizes and number of neighbors. This is partly region-dependent: for example, thick, columnar tesserae are arranged in series along convex edges with small radius of curvature (RoC), whereas more brick-or disc-shaped tesserae are found in planar areas. We apply our newly developed techniques on the left and right hyomandibula (skeletal elements supporting the jaws) from four different ages of a stingray species, to clarify how tiling patterns develop across ontogeny and differ within and between individuals. We evaluate the functional consequences of tesseral morphologies using finite element analysis and 3d-printing, for a better understanding of shark skeletal mechanics, but also to extract fundamental engineering design principles of tiling arrangements on load-bearing three-dimensional objects. Y1 - 2016 ER - TY - GEN A1 - Seidel, Ronald A1 - Knötel, David A1 - Baum, Daniel A1 - Weaver, James C. A1 - Dean, Mason N. T1 - Material and structural characterization of mineralized elasmobranch cartilage – lessons in repeated tiling patterns in mechanically loaded 3D objects T2 - Poster, Tomography for Scientific Advancement symposium (ToScA), London, UK, September 1 - 3, 2014 N2 - Biological tissues achieve a wide range of properties and function, however with limited components. The organization of these constituent parts is a decisive factor in the impressive properties of biological materials, with tissues often exhibiting complex arrangements of hard and soft materials. The “tessellated” cartilage of the endoskeleton of sharks and rays, for example, is a natural composite of mineralized polygonal tiles (tesserae), collagen fiber bundles, and unmineralized cartilage, resulting in a material that is both flexible and strong, with optimal stiffness. The properties of the materials and the tiling geometry are vital to the growth and mechanics of the system, but had not been investigated due to the technical challenges involved. We use high-resolution materials characterization techniques (qBEI, µCT) to show that tesserae exhibit great variability in mineral density, supporting theories of accretive growth mechanisms. We present a developmental series of tesserae and outline the development of unique structural features that appear to function in load bearing and energy dissipation, with some structural features far exceeding cortical bone’s mineral content and tissue stiffness. To examine interactions among tesserae, we developed an advanced tiling-recognition-algorithm to semi-automatically detect and isolate individual tiles in microCT scans of tesseral mats. The method allows quantification of shape variation across a wide area, allowing localization of regions of high/low reinforcement or flexibility in the skeleton. The combination of our material characterization and visualization techniques allows the first quantitative 3d description of anatomy and material properties of tesserae and the organization of tesseral networks in elasmobranch mineralized cartilage, providing insight into form-function relationships of the repeating tiled pattern. We aim to combine detailed knowledge of intra-tesseral morphology and mineralization to model the relationships of tesseral shapes and skeletal surface curvature, to understand fundamental tiling laws important for complex, mechanically loaded 3d objects. Y1 - 2014 ER - TY - GEN A1 - Titschack, Jürgen A1 - Baum, Daniel T1 - Advanced computed tomography analyses of cold-water coral mound cores: new insights into mound formation processes T2 - Poster, 19th International Sedimentological Congress, Geneva, Switzerland, 2014, August 18 - 22 Y1 - 2014 ER - TY - GEN A1 - Titschack, Jürgen A1 - Baum, Daniel T1 - Ambient occlusion - a powerful algorithm to segment skeletal intrapores and gastral cavities in dendrophyllid cold-water corals T2 - Poster, 31st IAS Meeting of Sedimentology, 2015, June 22-25, Kraków, Poland Y1 - 2015 ER - TY - GEN A1 - Dean, Mason N. A1 - Hosny, Ahmed A1 - Seidel, Ronald A1 - Baum, Daniel T1 - Biological strategies for fatique and wear avoidance: lessons from stingray skeletons and teeth T2 - Poster, Tomography for Scientific Advancement symposium (ToScA) Y1 - 2016 ER - TY - GEN A1 - Krone, Michael A1 - Kozlikova, Barbora A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Parulek, Julius A1 - Hege, Hans-Christian A1 - Viola, Ivan T1 - Visual Analysis of Biomolecular Cavities: State of the Art N2 - In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field. T3 - ZIB-Report - 16-42 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60193 SN - 1438-0064 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Wiebel, Alexander A1 - Prohaska, Steffen A1 - Hege, Hans-Christian T1 - Definition, Extraction, and Validation of Pore Structures in Porous Materials N2 - An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation. T3 - ZIB-Report - 13-56 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42510 SN - 1438-0064 ER - TY - GEN A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Günster, Jens A1 - Krauß-Schüler, Stefanie T1 - Adapting trabecular structures for 3D printing: an image processing approach based on µCT data N2 - Materials with a trabecular structure notably combine advantages such as lightweight, reasonable strength, and permeability for fluids. This combination of advantages is especially interesting for tissue engineering in trauma surgery and orthopedics. Bone-substituting scaffolds for instance are designed with a trabecular structure in order to allow cell migration for bone ingrowth and vascularization. An emerging and recently very popular technology to produce such complex, porous structures is 3D printing. However, several technological aspects regarding the scaffold architecture, the printable resolution, and the feature size have to be considered when fabricating scaffolds for bone tissue replacement and regeneration. Here, we present a strategy to assess and prepare realistic trabecular structures for 3D printing using image analysis with the aim of preserving the structural elements. We discuss critical conditions of the printing system and present a 3-stage approach to adapt a trabecular structure from $\mu$CT data while incorporating knowledge about the printing system. In the first stage, an image-based extraction of solid and void structures is performed, which results in voxel- and graph-based representations of the extracted structures. These representations not only allow us to quantify geometrical properties such as pore size or strut geometry and length. But, since the graph represents the geometry and the topology of the initial structure, it can be used in the second stage to modify and adjust feature size, volume and sample size in an easy and consistent way. In the final reconstruction stage, the graph is then converted into a voxel representation preserving the topology of the initial structure. This stage generates a model with respect to the printing conditions to ensure a stable and controlled voxel placement during the printing process. T3 - ZIB-Report - 17-26 KW - trabecular structures KW - image-based analysis KW - additive manufacturing KW - printability Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64004 SN - 1438-0064 ER - TY - CHAP A1 - Baum, Daniel A1 - Mahlow, Kristin A1 - Lamecker, Hans A1 - Zachow, Stefan A1 - Müller, Johannes A1 - Hege, Hans-Christian T1 - The Potential of Surface-based Geometric Morphometrics for Evolutionary Studies: An Example using Dwarf Snakes (Eirenis) T2 - Abstract in DigitalSpecimen 2014 N2 - Geometric morphometrics plays an important role in evolutionary studies. The state-of-the-art in this field are landmark-based methods. Since the landmarks usually need to be placed manually, only a limited number of landmarks are generally used to represent the shape of an anatomical structure. As a result, shape characteristics that cannot be properly represented by small sets of landmarks are disregarded. In this study, we present a method that is free of this limitation. The method takes into account the whole shape of an anatomical structure, which is represented as a surface, hence the term ‘surface-based morphometrics’. Correspondence between two surfaces is established by defining a partitioning of the surfaces into homologous surface patches. The first step for the generation of a surface partitioning is to place landmarks on the surface. Subsequently, the landmarks are connected by curves lying on the surface. The curves, called ‘surface paths’, might either follow specific anatomical features or they can be geodesics, that is, shortest paths on the surface. One important requirement, however, is that the resulting surface path networks are topologically equivalent across all surfaces. Once the surface path networks have been defined, the surfaces are decomposed into patches according to the path networks. This approach has several advantages. One of them is that we can discretize the surface by as many points as desired. Thus, even fine shape details can be resolved if this is of interest for the study. Since a point discretization is used, another advantage is that well-established analysis methods for landmark-based morphometrics can be utilized. Finally, the shapes can be easily morphed into one another, thereby greatly supporting the understanding of shape changes across all considered specimens. To show the potential of the described method for evolutionary studies of biological specimens, we applied the method to the para-basisphenoid complex of the snake genus Eirenis. By using this anatomical structure as example, we present all the steps that are necessary for surface-based morphometrics, including the segmentation of the para-basisphenoid complex from micro-CT data sets. We also show some first results using statistical analysis as well as classification methods based on the presented technique. Y1 - 2014 ER - TY - JOUR A1 - Homberg, Ulrike A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Günster, Jens A1 - Krauß-Schüler, Stefanie T1 - Adapting trabecular structures for 3D printing: an image processing approach based on µCT data JF - Biomedical Physics & Engineering Express N2 - Materials with a trabecular structure notably combine advantages such as lightweight, reasonable strength, and permeability for fluids. This combination of advantages is especially interesting for tissue engineering in trauma surgery and orthopedics. Bone-substituting scaffolds for instance are designed with a trabecular structure in order to allow cell migration for bone ingrowth and vascularization. An emerging and recently very popular technology to produce such complex, porous structures is 3D printing. However, several technological aspects regarding the scaffold architecture, the printable resolution, and the feature size have to be considered when fabricating scaffolds for bone tissue replacement and regeneration. Here, we present a strategy to assess and prepare realistic trabecular structures for 3D printing using image analysis with the aim of preserving the structural elements. We discuss critical conditions of the printing system and present a 3-stage approach to adapt a trabecular structure from $\mu$CT data while incorporating knowledge about the printing system. In the first stage, an image-based extraction of solid and void structures is performed, which results in voxel- and graph-based representations of the extracted structures. These representations not only allow us to quantify geometrical properties such as pore size or strut geometry and length. But, since the graph represents the geometry and the topology of the initial structure, it can be used in the second stage to modify and adjust feature size, volume and sample size in an easy and consistent way. In the final reconstruction stage, the graph is then converted into a voxel representation preserving the topology of the initial structure. This stage generates a model with respect to the printing conditions to ensure a stable and controlled voxel placement during the printing process. Y1 - 2017 U6 - https://doi.org/10.1088/2057-1976/aa7611 VL - 3 IS - 3 PB - IOP Publishing ER - TY - CHAP A1 - Arlt, Tobias A1 - Lindow, Norbert A1 - Baum, Daniel A1 - Hilger, Andre A1 - Mahnke, Ingo A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Mahnke, Heinz.Eberhard T1 - Virtual Access to Hidden Texts – Study of Ancient Papyri T2 - Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany N2 - When physical unfolding/unrolling of papyri is not possible or too dangerous for preserving the precious object, tomographic approaches may be the ap- propriate alternative. Requirements are the resolution and the contrast to distinguish writing and substrate. The steps to be performed are the following: (1) Select the object of interest (archaeological arguments, cultural back- ground of the object, etc.). (2) Find the proper physical procedure, especially with respect to contrast, take the tomographic data, e.g. by absorption x-ray tomography. (3) Apply mathematical unfolding transformations to the tomographic data, in order to obtain a 2d-planar reconstruction of text. Y1 - 2016 ER - TY - CHAP A1 - Dean, Mason N. A1 - Seidel, R. A1 - Knötel, David A1 - Lyons, K. A1 - Baum, Daniel A1 - Weaver, James C. A1 - Fratzl, Peter T1 - To build a shark: 3D tiling laws of tessellated cartilage T2 - Abstract in Integrative and Comparative Biology; conference Society of Integrative and Comparative Biology annual meeting, January 3-7, 2016, Portland, USA N2 - The endoskeleton of sharks and rays (elasmobranchs) is comprised of a cartilaginous core, covered by thousands of mineralized tiles, called tesserae. Characterizing the relationship between tesseral morphometrics, skeletal growth and mechanics is challenging because tesserae are small (a few hundred micrometers wide), anchored to the surrounding tissue in complex three-dimensional ways, and occur in huge numbers. We integrate material property, histology, electron microscopy and synchrotron and laboratory µCT scans of skeletal elements from an ontogenetic series of round stingray Urobatis halleri, to gain insights into the generation and maintenance of a natural tessellated system. Using a custom-made semiautomatic segmentation algorithm, we present the first quantitative and 3d description of tesserae across whole skeletal elements. The tessellation is not interlocking or regular, with tesserae showing a great range of shapes, sizes and number of neighbors. This is partly region-dependent: for example, thick, columnar tesserae are arranged in series along convex edges with small radius of curvature (RoC), whereas more brick- or disc-shaped tesserae are found in planar/flatter areas. Comparison of the tessellation across ontogeny, shows that in younger animals, the forming tesseral network is less densely packed, appearing as a covering of separate, poorly mineralized islands that grow together with age to form a complete surface. Some gaps in the tessellation are localized to specific regions in all samples, indicating they are real features, perhaps either regions of delayed mineralization or of tendon insertion. We will use the structure of elasmobranch skeletons as a road map for understanding shark and ray skeletal mechanics, but also to extract fundamental engineering principles for tiled composite materials. Y1 - 2016 UR - https://academic.oup.com/icb/article-pdf/56/suppl_1/e1/9102603/icw002.pdf VL - 56 (suppl 1) ER - TY - JOUR A1 - Paetsch, Olaf A1 - Baum, Daniel A1 - Prohaska, Steffen A1 - Ehrig, Karsten A1 - Ebell, Gino A1 - Meinel, Dietmar A1 - Heyn, Andreas T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben JF - DGZfP-Jahrestagung 2014 Konferenzband Y1 - 2014 ER - TY - JOUR A1 - Knötel, David A1 - Seidel, Ronald A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage JF - PLOS ONE N2 - Introduction – Many biological structures show recurring tiling patterns on one structural level or the other. Current image acquisition techniques are able to resolve those tiling patterns to allow quantitative analyses. The resulting image data, however, may contain an enormous number of elements. This renders manual image analysis infeasible, in particular when statistical analysis is to be conducted, requiring a larger number of image data to be analyzed. As a consequence, the analysis process needs to be automated to a large degree. In this paper, we describe a multi-step image segmentation pipeline for the automated segmentation of the calcified cartilage into individual tesserae from computed tomography images of skeletal elements of stingrays. Methods – Besides applying state-of-the-art algorithms like anisotropic diffusion smoothing, local thresholding for foreground segmentation, distance map calculation, and hierarchical watershed, we exploit a graph-based representation for fast correction of the segmentation. In addition, we propose a new distance map that is computed only in the plane that locally best approximates the calcified cartilage. This distance map drastically improves the separation of individual tesserae. We apply our segmentation pipeline to hyomandibulae from three individuals of the round stingray (Urobatis halleri), varying both in age and size. Results – Each of the hyomandibula datasets contains approximately 3000 tesserae. To evaluate the quality of the automated segmentation, four expert users manually generated ground truth segmentations of small parts of one hyomandibula. These ground truth segmentations allowed us to compare the segmentation quality w.r.t. individual tesserae. Additionally, to investigate the segmentation quality of whole skeletal elements, landmarks were manually placed on all tesserae and their positions were then compared to the segmented tesserae. With the proposed segmentation pipeline, we sped up the processing of a single skeletal element from days or weeks to a few hours. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0188018 ER - TY - GEN A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Heller, Eric J. T1 - Dust and gas emission from cometary nuclei: the case of comet 67P/Churyumov-Gerasimenko N2 - Comets display with decreasing solar distance an increased emission of gas and dust particles, leading to the formation of the coma and tail. Spacecraft missions provide insight in the temporal and spatial variations of the dust and gas sources located on the cometary nucleus. For the case of comet 67P/Churyumov-Gerasimenko (67P/C-G), the long-term obser- vations from the Rosetta mission point to a homogeneous dust emission across the entire illuminated surface. Despite the homogeneous initial dis- tribution, a collimation in jet-like structures becomes visible. We propose that this observation is linked directly to the complex shape of the nucleus and projects concave topographical features into the dust coma. To test this hypothesis, we put forward a gas-dust description of 67P/C-G, where gravitational and gas forces are accurately determined from the surface mesh and the rotation of the nucleus is fully incorporated. The emerging jet-like structures persist for a wide range of gas-dust interactions and show a dust velocity dependent bending. T3 - ZIB-Report - 17-78 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66338 SN - 1438-0064 ER - TY - GEN A1 - Knötel, David A1 - Seidel, Ronald A1 - Zaslansky, Paul A1 - Prohaska, Steffen A1 - Dean, Mason N. A1 - Baum, Daniel T1 - Automated Segmentation of Complex Patterns in Biological Tissues: Lessons from Stingray Tessellated Cartilage (Supplementary Material) N2 - Supplementary data to reproduce and understand key results from the related publication, including original image data and processed data. In particular, sections from hyomandibulae harvested from specimens of round stingray Urobatis halleri, donated from another study (DOI: 10.1002/etc.2564). Specimens were from sub-adults/adults collected by beach seine from collection sites in San Diego and Seal Beach, California, USA. The hyomandibulae were mounted in clay, sealed in ethanol-humidified plastic tubes and scanned with a Skyscan 1172 desktop μCT scanner (Bruker μCT, Kontich, Belgium) in association with another study (DOI: 10.1111/joa.12508). Scans for all samples were performed with voxel sizes of 4.89 μm at 59 kV source voltage and 167 μA source current, over 360◦ sample 120 rotation. For our segmentations, the datasets were resampled to a voxel size of 9.78 μm to reduce the size of the images and speed up processing. In addition, the processed data that was generated with the visualization software Amira with techniques described in the related publication based on the mentioned specimens. Y1 - 2017 U6 - https://doi.org/10.12752/4.DKN.1.0 N1 - Supplementary data to reproduce and understand key results from the related publication, including original image data and processed data. ER - TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Heller, Eric J. T1 - Dust and gas emission from cometary nuclei: the case of comet 67P/Churyumov-Gerasimenko JF - Advances in Physics: X N2 - Comets display with decreasing solar distance an increased emission of gas and dust particles, leading to the formation of the coma and tail. Spacecraft missions provide insight in the temporal and spatial variations of the dust and gas sources located on the cometary nucleus. For the case of comet 67P/Churyumov-Gerasimenko (67P/C-G), the long-term obser- vations from the Rosetta mission point to a homogeneous dust emission across the entire illuminated surface. Despite the homogeneous initial dis- tribution, a collimation in jet-like structures becomes visible. We propose that this observation is linked directly to the complex shape of the nucleus and projects concave topographical features into the dust coma. To test this hypothesis, we put forward a gas-dust description of 67P/C-G, where gravitational and gas forces are accurately determined from the surface mesh and the rotation of the nucleus is fully incorporated. The emerging jet-like structures persist for a wide range of gas-dust interactions and show a dust velocity dependent bending. Y1 - 2018 U6 - https://doi.org/10.1080/23746149.2017.1404436 VL - 3 IS - 1 SP - 1404436 ER - TY - JOUR A1 - Baum, Daniel A1 - Lindow, Norbert A1 - Hege, Hans-Christian A1 - Lepper, Verena A1 - Siopi, Tzulia A1 - Kutz, Frank A1 - Mahlow, Kristin A1 - Mahnke, Heinz-Eberhard T1 - Revealing hidden text in rolled and folded papyri JF - Applied Physics A N2 - Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds. Y1 - 2017 U6 - https://doi.org/10.1007/s00339-017-0808-6 VL - 123 IS - 3 SP - 171 ER - TY - JOUR A1 - Kozlíková, Barbora A1 - Krone, Michael A1 - Falk, Martin A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art Revisited JF - Computer Graphics Forum N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets. Y1 - 2016 U6 - https://doi.org/10.1111/cgf.13072 VL - 36 IS - 8 SP - 178 EP - 204 ER - TY - JOUR A1 - Kramer, Tobias A1 - Noack, Matthias A1 - Baum, Daniel A1 - Hege, Hans-Christian A1 - Heller, Eric J. T1 - Homogeneous dust emission and jet structure near active cometary nuclei: the case of 67P/Churyumov-Gerasimenko N2 - We compute trajectories of dust grains starting from a homogeneous surface activity-profile on a irregularly shaped cometary nucleus. Despite the initially homogeneous dust distribution a collimation in jet-like structures becomes visible. The fine structure is caused by concave topographical features with similar bundles of normal vectors. The model incorporates accurately determined gravitational forces, rotation of the nucleus, and gas-dust interaction. Jet-like dust structures are obtained for a wide range of gas-dust interactions. For the comet 67P/Churyumov-Gerasimenko, we derive the global dust distribution around the nucleus and find several areas of agreement between the homogeneous dust emission model and the Rosetta observation of dust jets, including velocity-dependent bending of trajectories. Y1 - 2015 ER - TY - GEN A1 - Baum, Daniel A1 - Titschack, Jürgen T1 - Cavity and Pore Segmentation in 3D Images with Ambient Occlusion N2 - Many natural objects contain pores and cavities that are filled with the same material that also surrounds the object. When such objects are imaged using, for example, computed tomography, the pores and cavities cannot be distinguished from the surrounding material by considering gray values and texture properties of the image. In this case, morphological operations are often used to fill the inner region. This is efficient, if the pore and cavity structures are small compared to the overall size of the object and if the object’s shape is mainly convex. If this is not the case, the segmentation might be very difficult and may result in a lot of noise. We propose the usage of ambient occlusion for the segmentation of pores and cavities. One nice property of ambient occlusion is that it generates smooth scalar fields. Due to this smoothness property, a segmentation based on those fields will result in smooth boundaries at the pore and cavity openings. This is often desired, particularly when dealing with natural objects. T3 - ZIB-Report - 16-17 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59151 SN - 1438-0064 ER - TY - JOUR A1 - Titschack, Jürgen A1 - Fink, Hiske G. A1 - Baum, Daniel A1 - Wienberg, Claudia A1 - Hebbeln, Dierk A1 - Freiwald, André T1 - Mediterranean cold-water corals - an important regional carbonate factory? JF - The Depositional Record Y1 - 2016 U6 - https://doi.org/10.1002/dep2.14 VL - 2 IS - 1 SP - 74 EP - 96 ER - TY - CHAP A1 - Baum, Daniel A1 - Titschack, Jürgen T1 - Cavity and Pore Segmentation in 3D Images with Ambient Occlusion T2 - EuroVis 2016 - Short Papers Y1 - 2016 U6 - https://doi.org/10.2312/eurovisshort.20161171 PB - The Eurographics Association ER - TY - JOUR A1 - Krone, Michael A1 - Kozlíková, Barbora A1 - Lindow, Norbert A1 - Baaden, Marc A1 - Baum, Daniel A1 - Parulek, Julius A1 - Hege, Hans-Christian A1 - Viola, Ivan T1 - Visual Analysis of Biomolecular Cavities: State of the Art JF - Computer Graphics Forum N2 - In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field. Y1 - 2016 U6 - https://doi.org/10.1111/cgf.12928 SN - 1467-8659 VL - 35 IS - 3 SP - 527 EP - 551 ER - TY - CHAP A1 - Kozlikova, Barbora A1 - Krone, Michael A1 - Lindow, Norbert A1 - Falk, Martin A1 - Baaden, Marc A1 - Baum, Daniel A1 - Viola, Ivan A1 - Parulek, Julius A1 - Hege, Hans-Christian T1 - Visualization of Biomolecular Structures: State of the Art T2 - EuroVis 2015 STARS Proceedings N2 - Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures. Y1 - 2015 U6 - https://doi.org/10.2312/eurovisstar.20151112 SP - 61 EP - 81 ER -