TY - GEN A1 - Achterberg, Tobias A1 - Raack, Christian T1 - The MCF-Separator -- Detecting and Exploiting Multi-Commodity Flow Structures in MIPs N2 - Given a general mixed integer program (MIP), we automatically detect block structures in the constraint matrix together with the coupling by capacity constraints arising from multi-commodity-flow formulations. We identify the underlying graph and generate cutting planes based on cuts in the detected network. Our implementation adds a separator to the branch-and-cut libraries of SCIP and CPLEX. We make use of the complemented mixed integer rounding framework (cMIR) but provide a special purpose aggregation heuristic that exploits the network structure. Our separation scheme speeds-up the computation for a large set of MIPs coming from network design problems by a factor of two on average. T3 - ZIB-Report - 09-38 KW - mixed integer programming KW - network detection KW - cut-based inequalities KW - cplex KW - scip Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11592 SN - 1438-0064 ER - TY - THES A1 - Achterberg, Tobias T1 - Constraint Integer Programming N2 - This thesis introduces the novel paradigm of "constraint integer programming" (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method. N2 - Diese Arbeit stellt einen integrierten Ansatz aus "Constraint Programming" (CP) und Gemischt-Ganzzahliger Programmierung ("Mixed Integer Programming", MIP) vor, den wir "Constraint Integer Programming" (CIP) nennen. Sowohl Modellierungs- als auch Lösungstechniken beider Felder fließen in den neuen integrierten Ansatz ein, um die unterschiedlichen Stärken der beiden Gebiete zu kombinieren. Als weiteren Beitrag stellen wir der wissenschaftlichen Gemeinschaft die Software SCIP zur Verfügung, die ein Framework für Constraint Integer Programming darstellt und zusätzlich Techniken des SAT-Lösens beinhaltet. SCIP ist im Source Code für akademische und nicht-kommerzielle Zwecke frei erhältlich. Unser Ansatz des Constraint Integer Programming ist eine Verallgemeinerung von MIP, die zusätzlich die Verwendung beliebiger Constraints erlaubt, solange sich diese durch lineare Bedingungen ausdrücken lassen falls alle ganzzahligen Variablen auf feste Werte eingestellt sind. Die Constraints werden von einer beliebigen Kombination aus CP- und MIP-Techniken behandelt. Dies beinhaltet insbesondere die "Domain Propagation", die Relaxierung der Constraints durch lineare Ungleichungen, sowie die Verstärkung der Relaxierung durch dynamisch generierte Schnittebenen. Die derzeitige Version von SCIP enthält alle Komponenten, die für das effiziente Lösen von Gemischt-Ganzzahligen Programmen benötigt werden. Die vorliegende Arbeit liefert eine ausführliche Beschreibung dieser Komponenten und bewertet verschiedene Varianten in Hinblick auf ihren Einfluß auf das Gesamt-Lösungsverhalten anhand von aufwendigen praktischen Experimenten. Dabei wird besonders auf die algorithmischen Aspekte eingegangen. Ein weiterer Hauptteil der Arbeit befasst sich mit der Chip-Design-Verifikation, die ein wichtiges Thema innerhalb des Fachgebiets der "Electronic Design Automation" darstellt. Chip-Hersteller müssen sicherstellen, dass der logische Entwurf einer Schaltung der gegebenen Spezifikation entspricht. Andernfalls würde der Chip fehlerhaftes Verhalten aufweisen, dass zu Fehlfunktionen innerhalb des Gerätes führen kann, in dem der Chip verwendet wird. Ein wichtiges Teilproblem in diesem Feld ist das Eigenschafts-Verifikations-Problem, bei dem geprüft wird, ob der gegebene Schaltkreisentwurf eine gewünschte Eigenschaft aufweist. Wir zeigen, wie dieses Problem als Constraint Integer Program modelliert werden kann und geben eine Reihe von problemspezifischen Algorithmen an, die die Struktur der einzelnen Constraints und der Gesamtschaltung ausnutzen. Testrechnungen auf Industrie-Beispielen vergleichen unseren Ansatz mit den bisher verwendeten SAT-Techniken und belegen den Erfolg unserer Methode. KW - Ganzzahlige Programmierung KW - Constraint Programmierung KW - SAT KW - Chip-Verifikation KW - Mathematische Programmierung KW - Integer Programming KW - Constraint Programming KW - SAT KW - Chip Verification KW - Mathematical Programming Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11129 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: Techniques and Applications N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-43 KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10950 SN - 1438-0064 ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael ED - IEEE, T1 - Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update T2 - IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel & Distributed Processing Symposium Workshops Y1 - 2014 SN - 978-1-4799-4117-9 U6 - https://doi.org/10.1109/IPDPSW.2014.174 SP - 1552 EP - 1561 PB - IEEE Computer Society CY - Washington, DC, USA ER - TY - JOUR A1 - Bestuzheva, Ksenia A1 - Gleixner, Ambros A1 - Achterberg, Tobias T1 - Efficient separation of RLT cuts for implicit and explicit bilinear terms JF - Mathematical Programming Y1 - 2025 U6 - https://doi.org/10.1007/s10107-024-02104-0 VL - 210 SP - 47 EP - 74 ER -