TY - THES A1 - Achterberg, Tobias T1 - Constraint Integer Programming N2 - This thesis introduces the novel paradigm of constraint integer programming (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method. N2 - Diese Arbeit stellt einen integrierten Ansatz aus Constraint Programming (CP) und Gemischt-Ganzzahliger Programmierung (Mixed Integer Programming, MIP) vor, den wir Constraint Integer Programming (CIP) nennen. Sowohl Modellierungs- als auch Lösungstechniken beider Felder fließen in den neuen integrierten Ansatz ein, um die unterschiedlichen Stärken der beiden Gebiete zu kombinieren. Als weiteren Beitrag stellen wir der wissenschaftlichen Gemeinschaft die Software SCIP zur Verfügung, die ein Framework für Constraint Integer Programming darstellt und zusätzlich Techniken des SAT-Lösens beinhaltet. SCIP ist im Source Code für akademische und nicht-kommerzielle Zwecke frei erhältlich. Unser Ansatz des Constraint Integer Programming ist eine Verallgemeinerung von MIP, die zusätzlich die Verwendung beliebiger Constraints erlaubt, solange sich diese durch lineare Bedingungen ausdrücken lassen falls alle ganzzahligen Variablen auf feste Werte eingestellt sind. Die Constraints werden von einer beliebigen Kombination aus CP- und MIP-Techniken behandelt. Dies beinhaltet insbesondere die Domain Propagation, die Relaxierung der Constraints durch lineare Ungleichungen, sowie die Verstärkung der Relaxierung durch dynamisch generierte Schnittebenen. Die derzeitige Version von SCIP enthält alle Komponenten, die für das effiziente Lösen von Gemischt-Ganzzahligen Programmen benötigt werden. Die vorliegende Arbeit liefert eine ausführliche Beschreibung dieser Komponenten und bewertet verschiedene Varianten in Hinblick auf ihren Einfluß auf das Gesamt-Lösungsverhalten anhand von aufwendigen praktischen Experimenten. Dabei wird besonders auf die algorithmischen Aspekte eingegangen. Der zweite Hauptteil der Arbeit befasst sich mit der Chip-Design-Verifikation, die ein wichtiges Thema innerhalb des Fachgebiets der Electronic Design Automation darstellt. Chip-Hersteller müssen sicherstellen, dass der logische Entwurf einer Schaltung der gegebenen Spezifikation entspricht. Andernfalls würde der Chip fehlerhaftes Verhalten aufweisen, dass zu Fehlfunktionen innerhalb des Gerätes führen kann, in dem der Chip verwendet wird. Ein wichtiges Teilproblem in diesem Feld ist das Eigenschafts-Verifikations-Problem, bei dem geprüft wird, ob der gegebene Schaltkreisentwurf eine gewünschte Eigenschaft aufweist. Wir zeigen, wie dieses Problem als Constraint Integer Program modelliert werden kann und geben eine Reihe von problemspezifischen Algorithmen an, die die Struktur der einzelnen Constraints und der Gesamtschaltung ausnutzen. Testrechnungen auf Industrie-Beispielen vergleichen unseren Ansatz mit den bisher verwendeten SAT-Techniken und belegen den Erfolg unserer Methode. KW - Ganzzahlige Programmierung KW - Constraint Programmierung KW - SAT KW - Chip-Verifikation KW - integer programming KW - constraint programming KW - SAT KW - chip verification Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:83-opus-16117 ER - TY - GEN A1 - Achterberg, Tobias T1 - Conflict Analysis in Mixed Integer Programming N2 - Conflict analysis for infeasible subproblems is one of the key ingredients in modern SAT solvers to cope with large real-world instances. In contrast, it is common practice for today's mixed integer programming solvers to just discard infeasible subproblems and the information they reveal. In this paper we try to remedy this situation by generalizing the SAT infeasibility analysis to mixed integer programming. We present heuristics for branch-and-cut solvers to generate valid inequalities from the current infeasible subproblem and the associated branching information. SAT techniques can then be used to strengthen the resulting cuts. We performed computational experiments which show the potential of our method: On feasible MIP instances, the number of required branching nodes was reduced by 50\% in the geometric mean. However, the total solving time increased by 15\%. on infeasible MIPs arising in the context of chip verification, the number of nodes was reduced by 90\%, thereby reducing the solving time by 60\%. T3 - ZIB-Report - 05-19 KW - mixed integer programming KW - branch and cut KW - conflict analysis KW - SAT Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8537 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Vigerske, Stefan A1 - Winkler, Michael T1 - 制約整数計画ソルバ SCIP の並列化 T1 - Parallelizing the Constraint Integer Programming Solver SCIP N2 - 制約整数計画(CIP: Constraint Integer Programming)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming), 充足可能性問題(SAT: Satisfiability Problems)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP (Solving Constraint Integer Programs)は,CIPを解くソルバとして実装され,Zuse Institute Berlin (ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発されたSCIP に対する2種類の並列化拡張を紹介する. 一つは,複数計算ノード間で大規模に並列動作するParaSCIP である. もう一つは,複数コアと共有メモリを持つ1台の計算機上で(スレッド)並列で動作するFiberSCIP である. ParaSCIP は,HLRN IIスーパーコンピュータ上で, 一つのインスタンスを解くために最大7,168 コアを利用した動作実績がある.また,統計数理研究所のFujitsu PRIMERGY RX200S5上でも,最大512コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5上 では,これまでに最適解が得られていなかったMIPLIB2010のインスタンスであるdg012142に最適解を与えた. N2 - The paradigm of Constraint Integer Programming (CIP) combines modeling and solving techniques from the fields of Constraint Programming (CP), Mixed Integer Programming (MIP) and Satisfiability Problems (SAT). The paradigm allows us to address a wide range of optimization problems. SCIP is an implementation of the idea of CIP and is now continuously extended by a group of researchers centered at Zuse Institute Berlin (ZIB). This paper introduces two parallel extensions of SCIP. One is ParaSCIP, which is intended to run on a large scale distributed memory computing environment, and the other is FiberSCIP, intended to run on shared memory computing environments. ParaSCIP has successfully been run on the HLRN II supercomputer utilizing up to 7,168 cores to solve a single difficult MIP. It has also been tested on an ISM supercomputer (Fujitsu PRIMERGY RX200S5 using up to 512 cores). The previously unsolved instance dg012142 from MIPLIB2010 was solved by using the ISM supercomputer. T2 - Parallelizing the Constraint Integer Programming Solver SCIP T3 - ZIB-Report - 13-22 KW - Mixed Integer Programming KW - Constraint Integer Programming KW - Parallel Computing KW - Distributed Memory Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18130 SN - 1438-0064 ER - TY - CHAP A1 - Bestuzheva, Ksenia A1 - Gleixner, Ambros A1 - Achterberg, Tobias T1 - Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products T2 - Integer Programming and Combinatorial Optimization. IPCO 2023. N2 - The reformulation-linearization technique (RLT) is a prominent approach to constructing tight linear relaxations of non-convex continuous and mixed-integer optimization problems. The goal of this paper is to extend the applicability and improve the performance of RLT for bilinear product relations. First, a method for detecting bilinear product relations implicitly contained in mixed-integer linear programs is developed based on analyzing linear constraints with binary variables, thus enabling the application of bilinear RLT to a new class of problems. Our second contribution addresses the high computational cost of RLT cut separation, which presents one of the major difficulties in applying RLT efficiently in practice. We propose a new RLT cutting plane separation algorithm which identifies combinations of linear constraints and bound factors that are expected to yield an inequality that is violated by the current relaxation solution. A detailed computational study based on implementations in two solvers evaluates the performance impact of the proposed methods. Y1 - 2023 U6 - https://doi.org/10.1007/978-3-031-32726-1_2 VL - 13904 SP - 14 EP - 28 PB - Springer, Cham ER -