TY - GEN A1 - Achterberg, Tobias A1 - Heinz, Stefan A1 - Koch, Thorsten T1 - Counting solutions of integer programs using unrestricted subtree detection N2 - In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection. T3 - ZIB-Report - 08-09 KW - Zählen KW - ganzzahlige Programme KW - IP KW - counting KW - integer programming KW - IP Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10632 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: a New Approach to Integrate CP and MIP N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-01 KW - Constraint Programming KW - Ganzzahlige Programmierung KW - Branch-And-Cut KW - Optimierungssoftware KW - Chipverifikation KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10520 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Brinkmann, Raik A1 - Wedler, Markus T1 - Property Checking with Constraint Integer Programming N2 - We address the property checking problem for SoC design verification at the register transfer level (RTL) by integrating techniques from integer programming, constraint programming, and SAT solving. Specialized domain propagation and preprocessing algorithms for individual RTL operations extend a general constraint integer programming framework. Conflict clauses are learned by analyzing infeasible LPs and deductions, and by employing reverse propagation. Experimental results show that our approach outperforms SAT techniques for proving the validity of properties on circuits containing arithmetics. T3 - ZIB-Report - 07-37 KW - formale Chip Verifikation KW - constraint integer programming KW - scip KW - Eigenschaftsprüfer KW - formal chip verification KW - constraint integer programming KW - scip KW - property checking KW - micro chip Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10376 SN - 1438-0064 ER - TY - THES A1 - Achterberg, Tobias T1 - Constraint Integer Programming N2 - This thesis introduces the novel paradigm of constraint integer programming (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method. N2 - Diese Arbeit stellt einen integrierten Ansatz aus Constraint Programming (CP) und Gemischt-Ganzzahliger Programmierung (Mixed Integer Programming, MIP) vor, den wir Constraint Integer Programming (CIP) nennen. Sowohl Modellierungs- als auch Lösungstechniken beider Felder fließen in den neuen integrierten Ansatz ein, um die unterschiedlichen Stärken der beiden Gebiete zu kombinieren. Als weiteren Beitrag stellen wir der wissenschaftlichen Gemeinschaft die Software SCIP zur Verfügung, die ein Framework für Constraint Integer Programming darstellt und zusätzlich Techniken des SAT-Lösens beinhaltet. SCIP ist im Source Code für akademische und nicht-kommerzielle Zwecke frei erhältlich. Unser Ansatz des Constraint Integer Programming ist eine Verallgemeinerung von MIP, die zusätzlich die Verwendung beliebiger Constraints erlaubt, solange sich diese durch lineare Bedingungen ausdrücken lassen falls alle ganzzahligen Variablen auf feste Werte eingestellt sind. Die Constraints werden von einer beliebigen Kombination aus CP- und MIP-Techniken behandelt. Dies beinhaltet insbesondere die Domain Propagation, die Relaxierung der Constraints durch lineare Ungleichungen, sowie die Verstärkung der Relaxierung durch dynamisch generierte Schnittebenen. Die derzeitige Version von SCIP enthält alle Komponenten, die für das effiziente Lösen von Gemischt-Ganzzahligen Programmen benötigt werden. Die vorliegende Arbeit liefert eine ausführliche Beschreibung dieser Komponenten und bewertet verschiedene Varianten in Hinblick auf ihren Einfluß auf das Gesamt-Lösungsverhalten anhand von aufwendigen praktischen Experimenten. Dabei wird besonders auf die algorithmischen Aspekte eingegangen. Der zweite Hauptteil der Arbeit befasst sich mit der Chip-Design-Verifikation, die ein wichtiges Thema innerhalb des Fachgebiets der Electronic Design Automation darstellt. Chip-Hersteller müssen sicherstellen, dass der logische Entwurf einer Schaltung der gegebenen Spezifikation entspricht. Andernfalls würde der Chip fehlerhaftes Verhalten aufweisen, dass zu Fehlfunktionen innerhalb des Gerätes führen kann, in dem der Chip verwendet wird. Ein wichtiges Teilproblem in diesem Feld ist das Eigenschafts-Verifikations-Problem, bei dem geprüft wird, ob der gegebene Schaltkreisentwurf eine gewünschte Eigenschaft aufweist. Wir zeigen, wie dieses Problem als Constraint Integer Program modelliert werden kann und geben eine Reihe von problemspezifischen Algorithmen an, die die Struktur der einzelnen Constraints und der Gesamtschaltung ausnutzen. Testrechnungen auf Industrie-Beispielen vergleichen unseren Ansatz mit den bisher verwendeten SAT-Techniken und belegen den Erfolg unserer Methode. KW - Ganzzahlige Programmierung KW - Constraint Programmierung KW - SAT KW - Chip-Verifikation KW - integer programming KW - constraint programming KW - SAT KW - chip verification Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:83-opus-16117 ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores T2 - Proc. of 30th IEEE International Parallel & Distributed Processing Symposium N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. Y1 - 2016 U6 - https://doi.org/10.1109/IPDPS.2016.56 ER - TY - GEN A1 - Achterberg, Tobias A1 - Bixby, Robert E. A1 - Gu, Zonghao A1 - Rothberg, Edward A1 - Weninger, Dieter T1 - Presolve Reductions in Mixed Integer Programming N2 - Mixed integer programming has become a very powerful tool for modeling and solving real-world planning and scheduling problems, with the breadth of applications appearing to be almost unlimited. A critical component in the solution of these mixed-integer programs is a set of routines commonly referred to as presolve. Presolve can be viewed as a collection of preprocessing techniques that reduce the size of and, more importantly, improve the ``strength'' of the given model formulation, that is, the degree to which the constraints of the formulation accurately describe the underlying polyhedron of integer-feasible solutions. As our computational results will show, presolve is a key factor in the speed with which we can solve mixed-integer programs, and is often the difference between a model being intractable and solvable, in some cases easily solvable. In this paper we describe the presolve functionality in the Gurobi commercial mixed-integer programming code. This includes an overview, or taxonomy of the different methods that are employed, as well as more-detailed descriptions of several of the techniques, with some of them appearing, to our knowledge, for the first time in the literature. T3 - ZIB-Report - 16-44 KW - integer programming KW - presolving KW - Gurobi Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60370 SN - 1438-0064 ER - TY - GEN A1 - Koch, Thorsten A1 - Achterberg, Tobias A1 - Andersen, Erling A1 - Bastert, Oliver A1 - Berthold, Timo A1 - Bixby, Robert E. A1 - Danna, Emilie A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Lodi, Andrea A1 - Mittelmann, Hans A1 - Ralphs, Ted A1 - Salvagnin, Domenico A1 - Steffy, Daniel A1 - Wolter, Kati T1 - MIPLIB 2010 N2 - This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic. T3 - ZIB-Report - 10-31 KW - Mixed Integer Programming KW - Problem Instances KW - IP KW - MIP KW - MIPLIB Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12953 ER - TY - GEN ED - Achterberg, Tobias ED - Beck, J. Christopher T1 - CPAIOR 2011 - Late Breaking Abstracts N2 - As part of the CPAIOR 2011 a call was made for late breaking abstracts for presentation at the conference. These abstracts were meant to represent work in process, recent work, or work appearing in other academic areas but of interest to the CPAIOR community. A total of 19 submissions were received of which 16 were selected by the program chairs for presentation. This document is a compilation of the presented abstracts. T3 - ZIB-Report - 11-20 KW - CPAIOR KW - Late Breaking Abstracts Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12947 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Hendel, Gregor T1 - Rounding and Propagation Heuristics for Mixed Integer Programming N2 - Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances. T3 - ZIB-Report - 11-29 KW - primal heuristic KW - mixed integer programming KW - domain propagation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13255 ER - TY - CHAP A1 - Achterberg, Tobias A1 - Berthold, Timo ED - van Hoeve, Willem ED - Hooker, John T1 - Hybrid Branching T2 - Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009 Y1 - 2009 VL - 5547 SP - 309 EP - 311 PB - Springer ER - TY - GEN A1 - Achterberg, Tobias A1 - Raack, Christian T1 - The MCF-Separator -- Detecting and Exploiting Multi-Commodity Flow Structures in MIPs N2 - Given a general mixed integer program (MIP), we automatically detect block structures in the constraint matrix together with the coupling by capacity constraints arising from multi-commodity-flow formulations. We identify the underlying graph and generate cutting planes based on cuts in the detected network. Our implementation adds a separator to the branch-and-cut libraries of SCIP and CPLEX. We make use of the complemented mixed integer rounding framework (cMIR) but provide a special purpose aggregation heuristic that exploits the network structure. Our separation scheme speeds-up the computation for a large set of MIPs coming from network design problems by a factor of two on average. T3 - ZIB-Report - 09-38 KW - mixed integer programming KW - network detection KW - cut-based inequalities KW - cplex KW - scip Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11592 SN - 1438-0064 ER - TY - THES A1 - Achterberg, Tobias T1 - Constraint Integer Programming N2 - This thesis introduces the novel paradigm of "constraint integer programming" (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method. N2 - Diese Arbeit stellt einen integrierten Ansatz aus "Constraint Programming" (CP) und Gemischt-Ganzzahliger Programmierung ("Mixed Integer Programming", MIP) vor, den wir "Constraint Integer Programming" (CIP) nennen. Sowohl Modellierungs- als auch Lösungstechniken beider Felder fließen in den neuen integrierten Ansatz ein, um die unterschiedlichen Stärken der beiden Gebiete zu kombinieren. Als weiteren Beitrag stellen wir der wissenschaftlichen Gemeinschaft die Software SCIP zur Verfügung, die ein Framework für Constraint Integer Programming darstellt und zusätzlich Techniken des SAT-Lösens beinhaltet. SCIP ist im Source Code für akademische und nicht-kommerzielle Zwecke frei erhältlich. Unser Ansatz des Constraint Integer Programming ist eine Verallgemeinerung von MIP, die zusätzlich die Verwendung beliebiger Constraints erlaubt, solange sich diese durch lineare Bedingungen ausdrücken lassen falls alle ganzzahligen Variablen auf feste Werte eingestellt sind. Die Constraints werden von einer beliebigen Kombination aus CP- und MIP-Techniken behandelt. Dies beinhaltet insbesondere die "Domain Propagation", die Relaxierung der Constraints durch lineare Ungleichungen, sowie die Verstärkung der Relaxierung durch dynamisch generierte Schnittebenen. Die derzeitige Version von SCIP enthält alle Komponenten, die für das effiziente Lösen von Gemischt-Ganzzahligen Programmen benötigt werden. Die vorliegende Arbeit liefert eine ausführliche Beschreibung dieser Komponenten und bewertet verschiedene Varianten in Hinblick auf ihren Einfluß auf das Gesamt-Lösungsverhalten anhand von aufwendigen praktischen Experimenten. Dabei wird besonders auf die algorithmischen Aspekte eingegangen. Ein weiterer Hauptteil der Arbeit befasst sich mit der Chip-Design-Verifikation, die ein wichtiges Thema innerhalb des Fachgebiets der "Electronic Design Automation" darstellt. Chip-Hersteller müssen sicherstellen, dass der logische Entwurf einer Schaltung der gegebenen Spezifikation entspricht. Andernfalls würde der Chip fehlerhaftes Verhalten aufweisen, dass zu Fehlfunktionen innerhalb des Gerätes führen kann, in dem der Chip verwendet wird. Ein wichtiges Teilproblem in diesem Feld ist das Eigenschafts-Verifikations-Problem, bei dem geprüft wird, ob der gegebene Schaltkreisentwurf eine gewünschte Eigenschaft aufweist. Wir zeigen, wie dieses Problem als Constraint Integer Program modelliert werden kann und geben eine Reihe von problemspezifischen Algorithmen an, die die Struktur der einzelnen Constraints und der Gesamtschaltung ausnutzen. Testrechnungen auf Industrie-Beispielen vergleichen unseren Ansatz mit den bisher verwendeten SAT-Techniken und belegen den Erfolg unserer Methode. KW - Ganzzahlige Programmierung KW - Constraint Programmierung KW - SAT KW - Chip-Verifikation KW - Mathematische Programmierung KW - Integer Programming KW - Constraint Programming KW - SAT KW - Chip Verification KW - Mathematical Programming Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11129 ER - TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: Techniques and Applications N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-43 KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10950 SN - 1438-0064 ER - TY - CHAP A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael ED - IEEE, T1 - Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update T2 - IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel & Distributed Processing Symposium Workshops Y1 - 2014 SN - 978-1-4799-4117-9 U6 - https://doi.org/10.1109/IPDPSW.2014.174 SP - 1552 EP - 1561 PB - IEEE Computer Society CY - Washington, DC, USA ER - TY - JOUR A1 - Bestuzheva, Ksenia A1 - Gleixner, Ambros A1 - Achterberg, Tobias T1 - Efficient separation of RLT cuts for implicit and explicit bilinear terms JF - Mathematical Programming Y1 - 2025 U6 - https://doi.org/10.1007/s10107-024-02104-0 VL - 210 SP - 47 EP - 74 ER -