TY - CHAP A1 - Schade, Stanley A1 - Schlechte, Thomas A1 - Witzig, Jakob T1 - Structure-based Decomposition for Pattern-Detection for Railway Timetables T2 - Operations Research Proceedings 2017 N2 - We consider the problem of pattern detection in large scale railway timetables. This problem arises in rolling stock optimization planning in order to identify invariant sections of the timetable for which a cyclic rotation plan is adequate. We propose a dual reduction technique which leads to an decomposition and enumeration method. Computational results for real world instances demonstrate that the method is able to produce optimal solutions as fast as standard MIP solvers. Y1 - 2018 U6 - https://doi.org/10.1007/978-3-319-89920-6_95 SP - 715 EP - 721 PB - Springer International Publishing ER - TY - GEN A1 - Schade, Stanley A1 - Schlechte, Thomas A1 - Witzig, Jakob T1 - Structure-based Decomposition for Pattern-Detection for Railway Timetables N2 - We consider the problem of pattern detection in large scale railway timetables. This problem arises in rolling stock optimization planning in order to identify invariant sections of the timetable for which a cyclic rotation plan is adequate. We propose a dual reduction technique which leads to an decomposition and enumeration method. Computational results for real world instances demonstrate that the method is able to produce optimal solutions as fast as standard MIP solvers. T3 - ZIB-Report - 17-40 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64525 SN - 1438-0064 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Schenker, Sebastian A1 - Skutella, Martin A1 - Strunk, Timo ED - Greuel, G.-M. ED - Koch, Thorsten ED - Paule, Peter ED - Sommese, Andrew T1 - PolySCIP T2 - Mathematical Software – ICMS 2016, 5th International Conference, Berlin, Germany, July 11-14, 2016, Proceedings N2 - PolySCIP is a new solver for multi-criteria integer and multi-criteria linear programs handling an arbitrary number of objectives. It is available as an official part of the non-commercial constraint integer programming framework SCIP. It utilizes a lifted weight space approach to compute the set of supported extreme non-dominated points and unbounded non-dominated rays, respectively. The algorithmic approach can be summarized as follows: At the beginning an arbitrary non-dominated point is computed (or it is determined that there is none) and a weight space polyhedron created. In every next iteration a vertex of the weight space polyhedron is selected whose entries give rise to a single-objective optimization problem via a combination of the original objectives. If the ptimization of this single-objective problem yields a new non-dominated point, the weight space polyhedron is updated. Otherwise another vertex of the weight space polyhedron is investigated. The algorithm finishes when all vertices of the weight space polyhedron have been investigated. The file format of PolySCIP is based on the widely used MPS format and allows a simple generation of multi-criteria models via an algebraic modelling language. Y1 - 2016 SN - 978-3-319-42431-6 U6 - https://doi.org/10.1007/978-3-319-42432-3_32 VL - 9725 SP - 259 EP - 264 PB - Springer International Publishing ET - Mathematical Software – ICMS 2016 ER -