TY - GEN A1 - Berg, Mascha A1 - Plöntzke, Julia A1 - Leonhard-Marek, Sabine A1 - Müller, Kerstin-Elisabeth A1 - Röblitz, Susanna T1 - A dynamic model to simulate potassium balance in dairy cows. N2 - High performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one of them being potassium, is indispensable for the prevention of imbalances. The potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, it is closely related with the glucose and electrolyte metabolism. In this paper, we present a dynamical model for the potassium balance in lactating and non-lactating dairy cows based on ordinary differential equations. Parameter values are obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for three different scenarios: potassium balance in (i) non-lactating cows with varying feed intake, (ii) non-lactating cows with varying potassium fraction in the diet, and (iii) lactating cows with varying milk production levels. The results give insights into the short and long term potassium metabolism, providing an important step towards the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies. T3 - ZIB-Report - 17-47 KW - cow, potassium, model, ode Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64756 SN - 1438-0064 ER - TY - GEN A1 - Fackeldey, Konstantin A1 - Röblitz, Susanna A1 - Scharkoi, Olga A1 - Weber, Marcus T1 - Soft Versus Hard Metastable Conformations in Molecular Simulations N2 - Particle methods have become indispensible in conformation dynamics to compute transition rates in protein folding, binding processes and molecular design, to mention a few. Conformation dynamics requires at a decomposition of a molecule's position space into metastable conformations. In this paper, we show how this decomposition can be obtained via the design of either ``soft'' or ``hard'' molecular conformations. We show, that the soft approach results in a larger metastabilitiy of the decomposition and is thus more advantegous. This is illustrated by a simulation of Alanine Dipeptide. T3 - ZIB-Report - 11-27 KW - Proteins, Conformation Space, Meshfree Methods Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13189 ER -