TY - GEN A1 - Orlowski, Sebastian A1 - Wessäly, Roland T1 - An Integer Programming Model for Multi-Layer Network Design N2 - We present an integer linear programming model for the design of multi-layer telecommunication networks. The formulation integrates hardware, capacity, routing, and grooming decisions in \emph{any} n umber of network layers. Practical hardware restrictions and cost can accurately be taken into account for technologies based on connection-oriented routing protocols. T3 - ZIB-Report - 04-49 KW - multi-layer networks KW - integer programming KW - network design KW - routing KW - grooming Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8248 ER - TY - GEN A1 - Bosse, Hartwig A1 - Grötschel, Martin A1 - Henk, Martin T1 - Polynomial Inequalities Representing Polyhedra N2 - Our main result is that every $n$-dimensional polytope can be described by at most $2n-1$ polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an $n$-dimensional pointed polyhedral cone we prove the bound $2n-2$ and for arbitrary polyhedra we get a constructible representation by $2n$ polynomial inequalities. T3 - ZIB-Report - 04-53 KW - polyhedra and polytopes KW - semi-algebraic sets KW - polyhedral combinatorics KW - polynomial inequalities KW - stability index Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8284 ER - TY - GEN A1 - Stephan, Rüdiger T1 - Facets of the (s,t)-p-path polytope N2 - \noindent We give a partial description of the $(s,t)-p$-path polytope of a directed graph $D$ which is the convex hull of the incidence vectors of simple directed $(s,t)$-paths in $D$ of length $p$. First, we point out how the $(s,t)-p$-path polytope is located in the family of path and cycle polyhedra. Next, we give some classes of valid inequalities which are very similar to inequalities which are valid for the $p$-cycle polytope, that is, the convex hull of the incidence vectors of simple cycles of length $p$ in $D$. We give necessary and sufficient conditions for these inequalities to be facet defining. Furthermore, we consider a class of inequalities that has been identifie d to be valid for $(s,t)$-paths of cardinality at most $p$. Finally, we transfer the results to related polytopes, in particular, the undirected counterpart of the $(s,t)-p$-path polytope. T3 - ZIB-Report - 06-38 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9328 ER - TY - GEN A1 - Kröller, Alexander A1 - Wessäly, Roland T1 - Integrated Optimization of Hardware Configuration and Capacity. Dimensioning in SDH and opaque WDM networks N2 - We suggest a new model for the design of telecommunication networks which integrates decisions about the topology, configuration of the switching hardware, link dimensioning, and protected routing of communication demands. Applying the branch-and-cut-algorithm implemented in our network planning and optimization tool DISCNET, we demonstrate that real-world based network planning instances of such an enhanced model can be solved. T3 - ZIB-Report - 03-49 KW - Survivable Network Design KW - Integer Programming KW - Hardware Configuration KW - Routing KW - Network Models KW - Network Planning KW - Resource Allocation KW - Surviva Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7714 ER - TY - GEN A1 - Orlowski, Sebastian A1 - Koster, Arie M.C.A. A1 - Raack, Christian A1 - Wessäly, Roland T1 - Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics N2 - This paper deals with MIP-based primal heuristics to be used within a branch-and-cut approach for solving multi-layer telecommunication network design problems. Based on a mixed-integer programming formulation for two network layers, we present three heuristics for solving important subproblems, two of which solve a sub-MIP. On multi-layer planning instances with many parallel logical links, we show the effectiveness of our heuristics in finding good solutions early in the branch-and-cut search tree. T3 - ZIB-Report - 06-47 KW - multi-layer network design KW - integer programming KW - branch-and-cut KW - heuristics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9412 ER - TY - GEN A1 - Kaibel, Volker A1 - Peinhardt, Matthias A1 - Pfetsch, Marc T1 - Orbitopal Fixing N2 - The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the permutation of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up the branch-and-cut tree. We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving this kind of symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the branch-and-cut tree, removes redundant parts of the tree produced by the above mentioned permutations. The method relies on certain polyhedra, called orbitopes, which have been investigated in (Kaibel and Pfetsch (2006)). However, it does not add inequalities to the model, and thus, it does not increase the difficulty of solving the linear programming relaxations. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem motivated from frequency planning in mobile telecommunication networks. T3 - ZIB-Report - 06-48 KW - symmetry breaking KW - variable fixing KW - orbitopes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9422 ER - TY - GEN A1 - Kaibel, Volker A1 - Pfetsch, Marc T1 - Packing and Partitioning Orbitopes N2 - We introduce orbitopes as the convex hulls of 0/1-matrices that are lexicographically maximal subject to a group acting on the columns. Special cases are packing and partitioning orbitopes, which arise from restrictions to matrices with at most or exactly one 1-entry in each row, respectively. The goal of investigating these polytopes is to gain insight into ways of breaking certain symmetries in integer programs by adding constraints, e.g., for a well-known formulation of the graph coloring problem. We provide a thorough polyhedral investigation of packing and partitioning orbitopes for the cases in which the group acting on the columns is the cyclic group or the symmetric group. Our main results are complete linear inequality descriptions of these polytopes by facet-defining inequalities. For the cyclic group case, the descriptions turn out to be totally unimodular, while for the symmetric group case, both the description and the proof are more involved. The associated separation problems can be solved in linear time. T3 - ZIB-Report - 06-17 KW - integer programming KW - symmetry breaking KW - lexicographic representatives Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9104 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Wagler, Annegret T1 - Comparing Imperfection Ratio and Imperfection Index for Graph Classes N2 - Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs $G$ where the stable set polytope $STAB(G)$ coincides with the fractional stable set polytope $QSTAB(G)$. For all imperfect graphs $G$ it holds that $STAB(G) \subset QSTAB(G)$. It is, therefore, natural to use the difference between the two polytopes in order to decide how far an imperfect graph is away from being perfect; we discuss three different concepts, involving the facet set of $STAB( G)$, the disjunctive index of $QSTAB(G)$, and the dilation ratio of the two polytopes. Including only certain types of facets for $STAB(G)$, we obtain graphs that are in some sense close to perfect graphs, for example minimally immperfect graphs, and certain other classes of so-called rank-perfect graphs. The imperfection ratio has been introduced by (Gerke and McDiarmid, 2001) as the dilation ratio of $STAB(G)$ and $QSTAB(G)$, whereas (Aguilera et al., 2003) suggest to take the disjunctive index of $Q STAB(G)$ as the imperfection index of $G$. For both invariants there exist no general upper bounds, but there are bounds known for the imperfection ratio of several graph classes (Coulonges et al. 2005, Gerke and McDiarmid, 2001). Outgoing from a graph-theoretical interpretation of the imperfection index, we conclude that the imperfection index is NP-hard to compute and we prove that there exists no upper bound on the imperfect ion index for those graph classes with a known bounded imperfection ratio. Comparing the two invariants on those classes, it seems that the imperfection index measures imperfection much more roughly than the imperfection ratio; therefoe, discuss possible directions for refinements. T3 - ZIB-Report - 05-50 KW - perfect graphs KW - imperfection ratio KW - imperfection index Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8836 ER - TY - GEN A1 - Berthold, Timo A1 - Gamrath, Gerald A1 - Salvagnin, Domenico T1 - Exploiting Dual Degeneracy in Branching N2 - Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 % on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 % on average. T3 - ZIB-Report - 19-17 KW - mixed integer programming KW - branching rule KW - search strategy KW - dual degeneracy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73028 SN - 1438-0064 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Völker, Helena A1 - Gleixner, Ambros T1 - Strengthening SONC Relaxations with Constraints Derived from Variable Bounds N2 - Nonnegativity certificates can be used to obtain tight dual bounds for polynomial optimization problems. Hierarchies of certificate-based relaxations ensure convergence to the global optimum, but higher levels of such hierarchies can become very computationally expensive, and the well-known sums of squares hierarchies scale poorly with the degree of the polynomials. This has motivated research into alternative certificates and approaches to global optimization. We consider sums of nonnegative circuit polynomials (SONC) certificates, which are well-suited for sparse problems since the computational cost depends on the number of terms in the polynomials and does not depend on the degrees of the polynomials. We propose a method that guarantees that given finite variable domains, a SONC relaxation will yield a finite dual bound. This method opens up a new approach to utilizing variable bounds in SONC-based methods, which is particularly crucial for integrating SONC relaxations into branch-and-bound algorithms. We report on computational experiments with incorporating SONC relaxations into the spatial branch-and-bound algorithm of the mixed-integer nonlinear programming framework SCIP. Applying our strengthening method increases the number of instances where the SONC relaxation of the root node yielded a finite dual bound from 9 to 330 out of 349 instances in the test set. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89510 SN - 1438-0064 ER -