TY - GEN A1 - Henrion, Rene A1 - Li, Pu A1 - Möller, Andris A1 - Steinbach, Marc A1 - Wendt, Moritz A1 - Wozny, Günter T1 - Stochastic Optimization for Operating Chemical Processes Under Uncertainty N2 - Mathematical optimization techniques are on their way to becoming a standard tool in chemical process engineering. While such approaches are usually based on deterministic models, uncertainties such as external disturbances play a significant role in many real-life applications. The present article gives an introduction to practical issues of process operation and to basic mathematical concepts required for the explicit treatment of uncertainties by stochastic optimization. T3 - ZIB-Report - 01-04 KW - Uncertainty KW - Chemical Processes KW - Multistage Stochastic Programs KW - Probabilistic Constraints Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6304 ER - TY - GEN A1 - Ehrhardt, Klaus A1 - Steinbach, Marc T1 - Nonlinear Optimization in Gas Networks N2 - The operative planning problem in natural gas distribution networks is addressed. An optimization model focusing on the governing PDE and other nonlinear aspects is presented together with a suitable discretization for transient optimization in large networks by SQP methods. Computational results for a range of related dynamic test problems demonstrate the viability of the approach. T3 - ZIB-Report - 03-46 KW - Gas networks KW - operative planning KW - large-scale optimization Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7687 ER - TY - GEN A1 - Steinbach, Marc T1 - On PDE Solution in Transient Optimization of Gas Networks N2 - Operative planning in gas distribution networks leads to large-scale mixed-integer optimization problems involving a hyperbolic PDE defined on a graph. We consider the NLP obtained under prescribed combinatorial decisions---or as relaxation in a branch and bound framework, addressing in particular the KKT systems arising in primal-dual interior methods. We propose a custom solution algorithm using sparse local projections, based on the KKT systems' structual properties induced by the discretized gas flow equations in combination with the underlying network topology. The numerical efficiency and accuracy of the algorithm are investigated, and detailed computational comparisons with a control space method and with the multifrontal solver MA27 are provided. T3 - ZIB-Report - 04-46 KW - Gas network KW - operative planning KW - PDE constrained optimization KW - KKT system factorization KW - sparse projection method Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8215 ER - TY - GEN A1 - Burgschweiger, Jens A1 - Gnädig, Bernd A1 - Steinbach, Marc T1 - Optimization Models for Operative Planning in Drinking Water Networks N2 - The topic of this paper is minimum cost operative planning of pressurized water supply networks over a finite horizon and under reliable demand forecast. Since this is a very hard problem, it is desirable to employ sophisticated mathematical algorithms, which in turn calls for carefully designed models with suitable properties. The paper develops a nonlinear mixed integer model and a nonlinear programming model with favorable properties for gradient-based optimization methods, based on smooth component models for the network elements. In combination with further nonlinear programming techniques (to be reported elsewhere), practically satisfactory near-optimum solutions even for large networks can be generated in acceptable time using standard optimization software on a PC workstation. Such an optimization system is in operation at Berliner Wasserbetriebe. T3 - ZIB-Report - 04-48 KW - Drinking water supply KW - distribution network KW - minimum cost operative planning KW - continuous time model KW - mixed integer model KW - nonlinear programming m Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8237 ER - TY - GEN A1 - Burgschweiger, Jens A1 - Gnädig, Bernd A1 - Steinbach, Marc T1 - Nonlinear Programming Techniques for Operative Planning in Large Drinking Water Networks N2 - Mathematical decision support for operative planning in water supply systems is highly desirable but leads to very difficult optimization problems. We propose a nonlinear programming approach that yields practically satisfactory operating schedules in acceptable computing time even for large networks. Based on a carefully designed model supporting gradient-based optimization algorithms, this approach employs a special initialization strategy for convergence acceleration, special minimum up and down time constraints together with pump aggregation to handle switching decisions, and several network reduction techniques for further speed-up. Results for selected application scenarios at Berliner Wasserbetriebe demonstrate the success of the approach. T3 - ZIB-Report - 05-31 KW - Water supply KW - large-scale nonlinear programming KW - convergence enhancement KW - discrete decisions KW - network reduction Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8657 ER - TY - GEN A1 - Burgschweiger, Jens A1 - Gnädig, Bernd A1 - Steinbach, Marc T1 - Optimierte Tagesplanung im Berliner Trinkwassernetz N2 - Der Artikel beschreibt ein mathematisches Optimierungssystem zur Betriebsplanung in großen Wassernetzen, das bei den Berliner Wasserbetrieben eingesetzt wird. Für das Berliner Versorgungsnetz werden Optimierungsergebnisse vorgestellt. T3 - ZIB-Report - 05-32 KW - Trinkwasserversorgung KW - kostenminimale Betriebsplanung KW - nichtlineare Optimierung KW - diskrete Entscheidungen Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8668 ER - TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten A1 - Niu, Lingfeng T1 - Experiments with nonlinear extensions to SCIP N2 - This paper describes several experiments to explore the options for solving a class of mixed integer nonlinear programming problems that stem from a real-world mine production planning project. The only type of nonlinear constraints in these problems are bilinear equalities involving continuous variables, which enforce the ratios between elements in mixed material streams. A branch-and-bound algorithm to handle the integer variables has been tried in another project. However, this branch-and-bound algorithm is not effective for handling the nonlinear constraints. Therefore state-of-the-art nonlinear solvers are utilized to solve the resulting nonlinear subproblems in this work. The experiments were carried out using the NEOS server for optimization. After finding that current nonlinear programming solvers seem to lack suitable preprocessing capabilities, we preprocess the instances beforehand and use an heuristic approach to solve the nonlinear subproblems. In the appendix, we explain how to add a polynomial constraint handler that uses IPOPT as embedded nonlinear programming solver for the constraint programming framework SCIP. This is one of the crucial steps for implementing our algorithm in SCIP. We briefly described our approach and give an idea of the work involved. T3 - ZIB-Report - 08-28 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8300 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Nonlinear pseudo-Boolean optimization: relaxation or propagation? N2 - Pseudo-Boolean problems lie on the border between satisfiability problems, constraint programming, and integer programming. In particular, nonlinear constraints in pseudo-Boolean optimization can be handled by methods arising in these different fields: One can either linearize them and work on a linear programming relaxation or one can treat them directly by propagation. In this paper, we investigate the individual strengths of these approaches and compare their computational performance. Furthermore, we integrate these techniques into a branch-and-cut-and-propagate framework, resulting in an efficient nonlinear pseudo-Boolean solver. T3 - ZIB-Report - 09-11 KW - Pseudo-Boolean KW - constraint integer programming KW - linear relaxation KW - separation algorithm KW - domain propagation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11232 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Cardonha, Carlos T1 - A Binary Quadratic Programming Approach to the Vehicle Positioning Problem N2 - The Vehicle Positioning Problem (VPP) consists of the assignment of vehicles (buses, trams or trains) of a public transport or railway company to parking positions in a depot and to timetabled trips. Such companies have many different types of vehicles, and each trip can be performed only by vehicles of some of these types. These assignments are non-trivial due to the topology of depots. The parking positions are organized in tracks, which work as one- or two-sided stacks or queues. If a required type of vehicle is not available in the front of any track, shunting movements must be performed in order to change vehicles' positions, which is undesirable and should be avoided. In this text we present integer linear and non-linear programming formulations for some versions of the problem and compare them from a theoretical and a computational point of view. T3 - ZIB-Report - 09-12 KW - quadratic programming KW - integer programming KW - nonlinear programming KW - vehicle positioning Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11242 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros T1 - Undercover – a primal heuristic for MINLP based on sub-MIPs generated by set covering N2 - We present Undercover, a primal heuristic for mixed-integer nonlinear programming (MINLP). The heuristic constructs a mixed-integer linear subproblem (sub-MIP) of a given MINLP by fixing a subset of the variables. We solve a set covering problem to identify a minimal set of variables which need to be fixed in order to linearise each constraint. Subsequently, these variables are fixed to approximate values, e.g. obtained from a linear outer approximation. The resulting sub-MIP is solved by a mixed-integer linear programming solver. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. Although general in nature, the heuristic seems most promising for mixed-integer quadratically constrained programmes (MIQCPs). We present computational results on a general test set of MIQCPs selected from the MINLPLib. T3 - ZIB-Report - 09-40 KW - MINLP KW - MIQCP KW - Primalheuristik KW - Nachbarschaftssuche KW - Mengenüberdeckung KW - mixed-integer nonlinear programming KW - MIQCP KW - primal heuristic KW - large neighborhood search KW - set covering Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11632 SN - 1438-0064 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Szabó, Jácint T1 - Gas Network Topology Optimization for Upcoming Market Requirements N2 - Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed. T3 - ZIB-Report - 11-09 KW - Mathematical Optimization KW - Gas Distribution Networks KW - Topology Planning Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12348 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - On the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 11-01 KW - MIQCP KW - MIP KW - mixed-integer quadratically constrained programming KW - computational KW - nonconvex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11998 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros T1 - Undercover: a primal MINLP heuristic exploring a largest sub-MIP N2 - We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers. T3 - ZIB-Report - 12-07 KW - Primal Heuristic KW - Mixed-Integer Nonlinear Programming KW - Large Neighborhood Search KW - Mixed-Integer Quadratically Constrained Programming KW - Nonconvex Optimization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14631 SN - 1438-0064 ER - TY - GEN A1 - Pfetsch, Marc A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Geißler, Nina A1 - Gollmer, Ralf A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Morsi, Antonio A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Vigerske, Stefan A1 - Willert, Bernhard T1 - Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions N2 - In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously. T3 - ZIB-Report - 12-41 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16531 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo T1 - RENS – the optimal rounding N2 - This article introduces RENS, the relaxation enforced neighborhood search, a large neighborhood search algorithm for mixed integer nonlinear programming (MINLP) that uses a sub-MINLP to explore the set of feasible roundings of an optimal solution x' of a linear or nonlinear relaxation. The sub-MINLP is constructed by fixing integer variables x_j with x'_j in Z and bounding the remaining integer variables to x_j in {floor(x'_j), ceil(x'_j)}. We describe two different applications of RENS: as a standalone algorithm to compute an optimal rounding of the given starting solution and as a primal heuristic inside a complete MINLP solver. We use the former to compare different kinds of relaxations and the impact of cutting planes on the roundability of the corresponding optimal solutions. We further utilize RENS to analyze the performance of three rounding heuristics implemented in the branch-cut-and-price framework SCIP. Finally, we study the impact of RENS when it is applied as a primal heuristic inside SCIP. All experiments were performed on three publically available test sets of mixed integer linear programs (MIPs), mixed integer quadratically constrained programs (MIQCPs), and MINLPs, using solely software which is available in source code. It turns out that for these problem classes 60% to 70% of the instances have roundable relaxation optima and that the success rate of RENS does not depend on the percentage of fractional variables. Last but not least, RENS applied as primal heuristic complements nicely with existing root node heuristics in SCIP and improves the overall performance. T3 - ZIB-Report - 12-17 KW - Primal Heuristic KW - Mixed-Integer Nonlinear Programming KW - Large Neighborhood Search KW - Mixed-Integer Quadratically Constrained Programming KW - Mixed-Intger Programming Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15203 SN - 1438-0064 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, Rene A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined. T3 - ZIB-Report - 13-13 KW - Gas Market Liberalization KW - Entry-Exit Model KW - Gas Network Access Regulation KW - Mixed-Integer Nonlinear Nonconvex Stochastic Optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17821 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Analyzing the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 13-08 KW - mixed-integer quadratically constrained programming KW - mixed-integer programming KW - branch-and-cut KW - nonconvex KW - global optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17754 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gleixner, Ambros A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Winkler, Michael A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 3.2 N2 - The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs. T3 - ZIB-Report - 15-60 KW - mixed-integer linear and nonlinear programming KW - MIP solver KW - MINLP solver KW - linear programming KW - LP solver KW - simplex method KW - modeling KW - parallel branch-and-bound KW - branch-cut-and-price framework KW - generic column generation KW - Steiner tree solver KW - multi-criteria optimization KW - mixed-integer semidefinite programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57675 SN - 1438-0064 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Gleixner, Ambros A1 - Vigerske, Stefan T1 - A Computational Study of Perspective Cuts N2 - The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study of perspective cuts within a linear programming based branch-and-cut solver for general mixed-integer nonlinear programs. Within this study, we extend the applicability of perspective cuts from convex to nonconvex nonlinearities. This generalization is achieved by applying a perspective strengthening to valid linear inequalities which separate solutions of linear relaxations. The resulting method can be applied to any constraint where all variables appearing in nonlinear terms are semi-continuous and depend on at least one common indicator variable. Our computational experiments show that adding perspective cuts for convex constraints yields a consistent improvement of performance, and adding perspective cuts for nonconvex constraints reduces branch-and-bound tree sizes and strengthens the root node relaxation, but has no significant impact on the overall mean time. T3 - ZIB-Report - 21-07 KW - perspective cuts, mixed-integer nonlinear programming, nonconvex optimization, computational study Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81821 SN - 1438-0064 ER - TY - GEN A1 - Chmiela, Antonia A1 - Muñoz, Gonzalo A1 - Serrano, Felipe T1 - On the implementation and strengthening of intersection cuts for QCQPs N2 - The generation of strong linear inequalities for QCQPs has been recently tackled by a number of authors using the intersection cut paradigm - a highly studied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of maximal quadratic-free sets. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for quick cut-computations by simply plugging-in parameters associated to an arbitrary quadratic inequality being violated by a vertex of an LP relaxation. Additionally, we implement a cut-strengthening procedure that dates back to Glover and evaluate these techniques with extensive computational experiments. KW - Intersection cuts KW - QCQPs KW - Quadratic-free sets Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-79994 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Besançon, Mathieu A1 - Chen, Wei-Kun A1 - Chmiela, Antonia A1 - Donkiewicz, Tim A1 - van Doornmalen, Jasper A1 - Eifler, Leon A1 - Gaul, Oliver A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Graczyk, Christoph A1 - Halbig, Katrin A1 - Hoen, Alexander A1 - Hojny, Christopher A1 - van der Hulst, Rolf A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc E. A1 - Rehfeldt, Daniel A1 - Schlein, Steffan A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Sofranac, Boro A1 - Turner, Mark A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Wellner, Philipp A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 8.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack. T3 - ZIB-Report - 21-41 KW - Constraint integer programming KW - Linear programming KW - Mixed-integer linear programming KW - Mixed-integer nonlinear programming KW - Optimization solver KW - Branch-and-cut KW - Branch-and-price KW - Column generation KW - Parallelization KW - Mixed-integer semidefinite programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85309 SN - 1438-0064 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Gleixner, Ambros A1 - Völker, Helena T1 - Strengthening SONC Relaxations with Constraints Derived from Variable Bounds N2 - Certificates of polynomial nonnegativity can be used to obtain tight dual bounds for polynomial optimization problems. We consider Sums of Nonnegative Circuit (SONC) polynomials certificates, which are well suited for sparse problems since the computational cost depends only on the number of terms in the polynomials and does not depend on the degrees of the polynomials. This work is a first step to integrating SONC-based relaxations of polynomial problems into a branch-and-bound algorithm. To this end, the SONC relaxation for constrained optimization problems is extended in order to better utilize variable bounds, since this property is key for the success of a relaxation in the context of branch-and-bound. Computational experiments show that the proposed extension is crucial for making the SONC relaxations applicable to most constrained polynomial optimization problems and for integrating the two approaches. T3 - ZIB-Report - 22-23 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88306 SN - 1438-0064 ER - TY - GEN A1 - Bolusani, Suresh A1 - Besançon, Mathieu A1 - Bestuzheva, Ksenia A1 - Chmiela, Antonia A1 - Dionísio, João A1 - Donkiewicz, Tim A1 - van Doornmalen, Jasper A1 - Eifler, Leon A1 - Ghannam, Mohammed A1 - Gleixner, Ambros A1 - Graczyk, Christoph A1 - Halbig, Katrin A1 - Hedtke, Ivo A1 - Hoen, Alexander A1 - Hojny, Christopher A1 - van der Hulst, Rolf A1 - Kamp, Dominik A1 - Koch, Thorsten A1 - Kofler, Kevin A1 - Lentz, Jurgen A1 - Manns, Julian A1 - Mexi, Gioni A1 - Mühmer, Erik A1 - E. Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Turner, Mark A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Xu, Liding T1 - The SCIP Optimization Suite 9.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver. T3 - ZIB-Report - 24-02-29 KW - Constraint integer programming KW - Linear programming KW - Mixed-integer linear programming KW - Mixed-integer nonlinear programming KW - Optimization solver KW - Branch-and-cut KW - Branch-and-price KW - Column generation KW - Parallelization KW - Mixed-integer semidefinite programming Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-95528 SN - 1438-0064 ER -