TY - GEN A1 - Berthold, Timo A1 - Witzig, Jakob T1 - Conflict Analysis for MINLP N2 - The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality. T3 - ZIB-Report - 20-20 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78964 SN - 1438-0064 ER - TY - GEN A1 - Vigerske, Stefan A1 - Gleixner, Ambros T1 - SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework N2 - This paper describes the extensions that were added to the constraint integer programming framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear programs (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithm based on a linear outer-approximation, which is computed by convex over- and underestimation of nonconvex functions. An expression graph representation of nonlinear constraints allows for bound tightening, structure analysis, and reformulation. Primal heuristics are employed throughout the solving process to find feasible solutions early. We provide insights into the performance impact of individual MINLP solver components via a detailed computational study over a large and heterogeneous test set. T3 - ZIB-Report - 16-24 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59377 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros T1 - Undercover: a primal MINLP heuristic exploring a largest sub-MIP N2 - We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers. T3 - ZIB-Report - 12-07 KW - Primal Heuristic KW - Mixed-Integer Nonlinear Programming KW - Large Neighborhood Search KW - Mixed-Integer Quadratically Constrained Programming KW - Nonconvex Optimization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14631 SN - 1438-0064 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Völker, Helena A1 - Gleixner, Ambros T1 - Strengthening SONC Relaxations with Constraints Derived from Variable Bounds N2 - Nonnegativity certificates can be used to obtain tight dual bounds for polynomial optimization problems. Hierarchies of certificate-based relaxations ensure convergence to the global optimum, but higher levels of such hierarchies can become very computationally expensive, and the well-known sums of squares hierarchies scale poorly with the degree of the polynomials. This has motivated research into alternative certificates and approaches to global optimization. We consider sums of nonnegative circuit polynomials (SONC) certificates, which are well-suited for sparse problems since the computational cost depends on the number of terms in the polynomials and does not depend on the degrees of the polynomials. We propose a method that guarantees that given finite variable domains, a SONC relaxation will yield a finite dual bound. This method opens up a new approach to utilizing variable bounds in SONC-based methods, which is particularly crucial for integrating SONC relaxations into branch-and-bound algorithms. We report on computational experiments with incorporating SONC relaxations into the spatial branch-and-bound algorithm of the mixed-integer nonlinear programming framework SCIP. Applying our strengthening method increases the number of instances where the SONC relaxation of the root node yielded a finite dual bound from 9 to 330 out of 349 instances in the test set. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89510 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Weltge, Stefan T1 - Learning and Propagating Lagrangian Variable Bounds for Mixed-Integer Nonlinear Programming N2 - Optimization-based bound tightening (OBBT) is a domain reduction technique commonly used in nonconvex mixed-integer nonlinear programming that solves a sequence of auxiliary linear programs. Each variable is minimized and maximized to obtain the tightest bounds valid for a global linear relaxation. This paper shows how the dual solutions of the auxiliary linear programs can be used to learn what we call Lagrangian variable bound constraints. These are linear inequalities that explain OBBT's domain reductions in terms of the bounds on other variables and the objective value of the incumbent solution. Within a spatial branch-and-bound algorithm, they can be learnt a priori (during OBBT at the root node) and propagated within the search tree at very low computational cost. Experiments with an implementation inside the MINLP solver SCIP show that this reduces the number of branch-and-bound nodes and speeds up solution times. T3 - ZIB-Report - 13-04 KW - MINLP KW - optimization-based bound tightening KW - optimality-based bound tightening KW - OBBT KW - propagation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17631 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Analyzing the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 13-08 KW - mixed-integer quadratically constrained programming KW - mixed-integer programming KW - branch-and-cut KW - nonconvex KW - global optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17754 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Vigerske, Stefan T1 - Comparing MIQCP solvers to a specialised algorithm for mine production scheduling N2 - In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm. T3 - ZIB-Report - 09-32 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11507 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros T1 - Undercover Branching N2 - In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred. Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule. We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved. T3 - ZIB-Report - 13-14 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18030 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - On the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 11-01 KW - MIQCP KW - MIP KW - mixed-integer quadratically constrained programming KW - computational KW - nonconvex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11998 ER - TY - GEN A1 - Bestuzheva, Ksenia A1 - Gleixner, Ambros A1 - Völker, Helena T1 - Strengthening SONC Relaxations with Constraints Derived from Variable Bounds N2 - Certificates of polynomial nonnegativity can be used to obtain tight dual bounds for polynomial optimization problems. We consider Sums of Nonnegative Circuit (SONC) polynomials certificates, which are well suited for sparse problems since the computational cost depends only on the number of terms in the polynomials and does not depend on the degrees of the polynomials. This work is a first step to integrating SONC-based relaxations of polynomial problems into a branch-and-bound algorithm. To this end, the SONC relaxation for constrained optimization problems is extended in order to better utilize variable bounds, since this property is key for the success of a relaxation in the context of branch-and-bound. Computational experiments show that the proposed extension is crucial for making the SONC relaxations applicable to most constrained polynomial optimization problems and for integrating the two approaches. T3 - ZIB-Report - 22-23 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88306 SN - 1438-0064 ER -