TY - GEN A1 - Achterberg, Tobias A1 - Koch, Thorsten A1 - Martin, Alexander T1 - MIPLIB 2003 N2 - This paper reports on the fourth version of the Mixed Integer Programming Library. Since ({\sc miplib}) is to provide a concise set of challenging problems, it became necessary to purge instances that became too easy. We present an overview of the 27 new problems and statistical data for all 60 instances. T3 - ZIB-Report - 05-28 KW - Mathematical Programming KW - Mixed Integer Programming KW - IP KW - MIP KW - Optimization KW - Instances Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8625 ER - TY - GEN A1 - Burgschweiger, Jens A1 - Gnädig, Bernd A1 - Steinbach, Marc T1 - Optimization Models for Operative Planning in Drinking Water Networks N2 - The topic of this paper is minimum cost operative planning of pressurized water supply networks over a finite horizon and under reliable demand forecast. Since this is a very hard problem, it is desirable to employ sophisticated mathematical algorithms, which in turn calls for carefully designed models with suitable properties. The paper develops a nonlinear mixed integer model and a nonlinear programming model with favorable properties for gradient-based optimization methods, based on smooth component models for the network elements. In combination with further nonlinear programming techniques (to be reported elsewhere), practically satisfactory near-optimum solutions even for large networks can be generated in acceptable time using standard optimization software on a PC workstation. Such an optimization system is in operation at Berliner Wasserbetriebe. T3 - ZIB-Report - 04-48 KW - Drinking water supply KW - distribution network KW - minimum cost operative planning KW - continuous time model KW - mixed integer model KW - nonlinear programming m Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8237 ER - TY - GEN A1 - Orlowski, Sebastian A1 - Wessäly, Roland T1 - An Integer Programming Model for Multi-Layer Network Design N2 - We present an integer linear programming model for the design of multi-layer telecommunication networks. The formulation integrates hardware, capacity, routing, and grooming decisions in \emph{any} n umber of network layers. Practical hardware restrictions and cost can accurately be taken into account for technologies based on connection-oriented routing protocols. T3 - ZIB-Report - 04-49 KW - multi-layer networks KW - integer programming KW - network design KW - routing KW - grooming Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8248 ER - TY - GEN A1 - Kröller, Alexander A1 - Wessäly, Roland T1 - Integrated Optimization of Hardware Configuration and Capacity. Dimensioning in SDH and opaque WDM networks N2 - We suggest a new model for the design of telecommunication networks which integrates decisions about the topology, configuration of the switching hardware, link dimensioning, and protected routing of communication demands. Applying the branch-and-cut-algorithm implemented in our network planning and optimization tool DISCNET, we demonstrate that real-world based network planning instances of such an enhanced model can be solved. T3 - ZIB-Report - 03-49 KW - Survivable Network Design KW - Integer Programming KW - Hardware Configuration KW - Routing KW - Network Models KW - Network Planning KW - Resource Allocation KW - Surviva Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7714 ER - TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten A1 - Wessäly, Roland T1 - Large-scale hierarchical networks: How to compute an optimal architecture? N2 - In this article, we present a mathematical model and an algorithm to support one of the central strategic planning decisions of network operators: How to organize a large number of locations into a hierarchical network? We propose a solution approach that is based on mixed-integer programming and Lagrangian relaxation techniques. As major advantage, our approach provides not only solutions but also worst-case quality guarantees. Real-world scenarios with more than 750 locations have been solved within 30 minutes to less than 1\% off optimality. T3 - ZIB-Report - 04-04 KW - Hierarchical Networks KW - Mixed-Integer Programming KW - Lagrangian Relaxation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7799 ER - TY - GEN A1 - Koch, Thorsten A1 - Wessäly, Roland T1 - Hierarchical Infrastructure Planning in Networks N2 - In this article, strategical infrastructure planning problems in the design of large-scale telecommunication networks are discussed based on experiences from three projects with industrial partners: The access network planning of the German Gigabit-Wissenschaftsnetz (G-WiN) for DFN (Verein zur Förderung eines Deutschen Forschungsnetzes e.V.), the mobile network switching center location planning project for E-Plus Mobilfunk, and the fixed network switching center location planning project for TELEKOM AUSTRIA. We introduce a mathematical model for a hierarchical multi-commodity capacitated facility location problem, present adaptions of this basic model to the specific requirements within the different projects and discuss the individual peculiarities and model decisions made. Eventually, we present and discuss computational results of three associated case studies, illustrating '"how we did the job`` with mathematical methods. T3 - ZIB-Report - 04-42 KW - Facility Location KW - Telecommunication KW - Mixed Integer Programming Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8174 ER - TY - GEN A1 - Achterberg, Tobias T1 - Conflict Analysis in Mixed Integer Programming N2 - Conflict analysis for infeasible subproblems is one of the key ingredients in modern SAT solvers to cope with large real-world instances. In contrast, it is common practice for today's mixed integer programming solvers to just discard infeasible subproblems and the information they reveal. In this paper we try to remedy this situation by generalizing the SAT infeasibility analysis to mixed integer programming. We present heuristics for branch-and-cut solvers to generate valid inequalities from the current infeasible subproblem and the associated branching information. SAT techniques can then be used to strengthen the resulting cuts. We performed computational experiments which show the potential of our method: On feasible MIP instances, the number of required branching nodes was reduced by 50\% in the geometric mean. However, the total solving time increased by 15\%. on infeasible MIPs arising in the context of chip verification, the number of nodes was reduced by 90\%, thereby reducing the solving time by 60\%. T3 - ZIB-Report - 05-19 KW - mixed integer programming KW - branch and cut KW - conflict analysis KW - SAT Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8537 ER - TY - GEN A1 - Achterberg, Tobias A1 - Grötschel, Martin A1 - Koch, Thorsten T1 - Software for Teaching Modeling of Integer Programming Problems N2 - Modern applications of mathematical programming must take into account a multitude of technical details, business demands, and legal requirements. Teaching the mathematical modeling of such issues and their interrelations requires real-world examples that are well beyond the toy sizes that can be tackled with the student editions of most commercial software packages. We present a new tool, which is freely available for academic use including complete source code. It consists of an algebraic modeling language and a linear mixed integer programming solver. The performance and features of the tool are in the range of current state-of-the-art commercial tools, though not in all aspects as good as the best ones. Our tool does allow the execution and analysis of large real-world instances in the classroom and can therefore enhance the teaching of problem solving issues. Teaching experience has been gathered and practical usability was tested in classes at several universities and a two week intensive block course at TU Berlin. The feedback from students and teachers has been very positive. T3 - ZIB-Report - 06-23 KW - Integer Programming KW - Modelling KW - MIP-Solver KW - Algebraic Modelling Languages KW - Teaching Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9176 ER - TY - GEN A1 - Bley, Andreas A1 - Grötschel, Martin A1 - Wessäly, Roland T1 - Design of Broadband Virtual Private Networks: Model and Heuristics for the B–WiN N2 - We investigate the problem of designing survivable broadband virtual private networks that employ the Open Shortest Path First (OSPF) routing protocol to route the packages. The capacities available for the links of the network are a minimal capacity plus multiples of a unit capacity. Given the directed communication demands between all pairs of nodes, we wish to select the capacities in a such way, that even in case of a single node or a single link failure a specified percentage of each demand can be satisfied and the costs for these capacities are minimal. We present a mixed--integer linear programming formulation of this problem and several heuristics for its solution. Furthermore, we report on computational results with real-world data. T3 - ZIB-Report - SC-98-13 KW - Telecommunication Network Design KW - Survivable Networks KW - Network Capacity Planning KW - OSPF Routing KW - Shortest Path Routing KW - Heuristics Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3565 ER - TY - GEN A1 - Berthold, Timo A1 - Witzig, Jakob T1 - Conflict Analysis for MINLP N2 - The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality. T3 - ZIB-Report - 20-20 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78964 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo T1 - Conflict-Free Learning for Mixed Integer Programming N2 - Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set. T3 - ZIB-Report - 19-59 KW - mixed integer programming KW - conflict analysis KW - dual proof analysis KW - no-good learning KW - solution learning Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75338 SN - 1438-0064 ER - TY - GEN A1 - Hoang, Nam-Dung A1 - Koch, Thorsten T1 - Steiner Tree Packing Revisited N2 - The Steiner tree packing problem (STPP) in graphs is a long studied problem in combinatorial optimization. In contrast to many other problems, where there have been tremendous advances in practical problem solving, STPP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for computing optimal solutions. In this paper we review some “classical” STPP instances which model the underlying real world application only in a reduced form. Through improved modelling, including some new cutting planes, and by emplyoing recent advances in solver technology we are for the first time able to solve those instances in the original 3D grid graphs to optimimality. T3 - ZIB-Report - 12-02 KW - Steiner tree packing KW - Integer Programming KW - grid graphs Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14625 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gamrath, Gerald A1 - Salvagnin, Domenico T1 - Exploiting Dual Degeneracy in Branching N2 - Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 % on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 % on average. T3 - ZIB-Report - 19-17 KW - mixed integer programming KW - branching rule KW - search strategy KW - dual degeneracy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73028 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Computational Aspects of Infeasibility Analysis in Mixed Integer Programming N2 - The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress. T3 - ZIB-Report - 19-54 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74962 SN - 1438-0064 ER - TY - THES A1 - Gleixner, Ambros T1 - Solving Large-scale Open Pit Mining Production Scheduling Problems by Integer Programming N2 - Since the initial application of mathematical optimisation methods to mine planning in 1965, the Lerchs-Grossmann algorithm for computing the ultimate pit limit, operations researchers have worked on a variety of challenging problems in the area of open pit mining. This thesis focuses on the open pit mining production scheduling problem: Given the discretisation of an orebody as a block model, determine the sequence in which the blocks should be removed from the pit, over the lifespan of the mine, such that the net present value of the mining operation is maximised. In practise, when some material has been removed from the pit, it must be processed further in order to extract the valuable elements contained therein. If the concentration of valuable elements is not sufficiently high, the material is discarded as waste or stockpiled. Realistically-sized block models can contain hundreds of thousands of blocks. A common approach to render these problem instances computationally tractable is the aggregation of blocks to larger scheduling units. The thrust of this thesis is the investigation of a new mixed-integer programming formulation for the open pit mining production scheduling problem, which allows for processing decisions to be made at block level, while the actual mining schedule is still computed at aggregate level. A drawback of this model in its full form is the large number of additional variables needed to model the processing decisions. One main result of this thesis shows how these processing variables can be aggregated efficiently to reduce the problem size significantly, while practically incurring no loss in net present value. The second focus is on the application of lagrangean relaxation to the resource constraints. Using a result of Möhring et al. (2003) for project scheduling, the lagrangean relaxation can be solved efficiently via minimum cut computations in a weighted digraph. Experiments with a bundle algorithm implementation by Helmberg showed how the lagrangean dual can be solved within a small fraction of the time required by standard linear programming algorithms, while yielding practically the same dual bound. Finally, several problem-specific heuristics are presented together with computational results: two greedy sub-MIP start heuristics and a large neighbourhood search heuristic. A combination of a lagrangean-based start heuristic followed by a large neighbourhood search proved to be effective in generating solutions with objective values within a 0.05% gap of the optimum. Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11389 ER - TY - GEN A1 - Vigerske, Stefan A1 - Gleixner, Ambros T1 - SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework N2 - This paper describes the extensions that were added to the constraint integer programming framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear programs (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithm based on a linear outer-approximation, which is computed by convex over- and underestimation of nonconvex functions. An expression graph representation of nonlinear constraints allows for bound tightening, structure analysis, and reformulation. Primal heuristics are employed throughout the solving process to find feasible solutions early. We provide insights into the performance impact of individual MINLP solver components via a detailed computational study over a large and heterogeneous test set. T3 - ZIB-Report - 16-24 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59377 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros T1 - Undercover: a primal MINLP heuristic exploring a largest sub-MIP N2 - We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers. T3 - ZIB-Report - 12-07 KW - Primal Heuristic KW - Mixed-Integer Nonlinear Programming KW - Large Neighborhood Search KW - Mixed-Integer Quadratically Constrained Programming KW - Nonconvex Optimization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14631 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros T1 - Undercover – a primal heuristic for MINLP based on sub-MIPs generated by set covering N2 - We present Undercover, a primal heuristic for mixed-integer nonlinear programming (MINLP). The heuristic constructs a mixed-integer linear subproblem (sub-MIP) of a given MINLP by fixing a subset of the variables. We solve a set covering problem to identify a minimal set of variables which need to be fixed in order to linearise each constraint. Subsequently, these variables are fixed to approximate values, e.g. obtained from a linear outer approximation. The resulting sub-MIP is solved by a mixed-integer linear programming solver. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. Although general in nature, the heuristic seems most promising for mixed-integer quadratically constrained programmes (MIQCPs). We present computational results on a general test set of MIQCPs selected from the MINLPLib. T3 - ZIB-Report - 09-40 KW - MINLP KW - MIQCP KW - Primalheuristik KW - Nachbarschaftssuche KW - Mengenüberdeckung KW - mixed-integer nonlinear programming KW - MIQCP KW - primal heuristic KW - large neighborhood search KW - set covering Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11632 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gleixner, Ambros A1 - Heinz, Stefan A1 - Vigerske, Stefan T1 - Analyzing the computational impact of MIQCP solver components N2 - We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances. T3 - ZIB-Report - 13-08 KW - mixed-integer quadratically constrained programming KW - mixed-integer programming KW - branch-and-cut KW - nonconvex KW - global optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17754 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Vigerske, Stefan T1 - Comparing MIQCP solvers to a specialised algorithm for mine production scheduling N2 - In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm. T3 - ZIB-Report - 09-32 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11507 SN - 1438-0064 ER -