TY - GEN A1 - Borndörfer, Ralf A1 - Karbstein, Marika T1 - Metric Inequalities for Routings on Direct Connections N2 - We consider multi-commodity flow problems in which capacities are installed on paths. In this setting, it is often important to distinguish between flows on direct connection routes, using single paths, and flows that include path switching. We show that the concept of metric inequalities to characterize capacities that support a multi-commodity flow can be generalized to deal with direct connections. T3 - ZIB-Report - 14-04 KW - metric inequalities KW - direct connection KW - multi-commodity flow problem Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-44219 SN - 1438-0064 ER - TY - THES A1 - Karbstein, Marika T1 - Line Planning and Connectivity N2 - This thesis introduces the Steiner connectivity problem. It is a generalization of the well known Steiner tree problem. Given a graph G = (V, E) and a subset T ⊆ V of the nodes, the Steiner tree problem consists in finding a cost minimal set of edges connecting all nodes in T . The Steiner connectivity problem chooses, instead of edges, from a given set of paths a subset to connect all nodes in T . We show in the first part of this thesis that main results about complexity, approximation, integer programming formulations, and polyhedra can be generalized from the Steiner tree problem to the Steiner connectivity problem. An example for a straightforward generalization are the Steiner partition inequalities, a fundamental class of facet defining inequalities for the Steiner tree problem. They can be defined for the Steiner connectivity problem in an analogous way as for the Steiner tree problem. An example for a generalization that needs more effort is the definition of a directed cut formulation and the proof that this dominates the canonical undirected cut formulation enriched by all Steiner partition inequalities. For the Steiner connectivity problem this directed cut formulation leads to extended formulations, a concept that is not necessary for the Steiner tree problem. There are also major differences between both problems. For instance, the case T = V for the Steiner connectivity problem is equivalent to a set covering problem and, hence, not a polynomial solvable case as in the Steiner tree problem. The Steiner connectivity problem is not only an interesting generalization of the Steiner tree problem but also the underlying connectivity problem in line planning with inte- grated passenger routing. The integrated line planning and passenger routing problem is an important planning problem in service design of public transport and the topic of the second part. Given is the infrastructure network of a public transport system where the edges correspond to streets and tracks and the nodes correspond to stations/stops of lines. The task is to find paths in the infrastructure network for lines and passengers such that the capacities of the lines suffice to transport all passengers. Existing models in the literature that integrate a passenger routing in line planning either treat transfers in a rudimentary way and, hence, neglect an important aspect for the choice of the pas- senger routes, or they treat transfers in a too comprehensive way and cannot be solved for large scale real world problems. We propose a new model that focuses on direct connections. The attractiveness of transfer free connections is increased by introducing a transfer penalty for each non-direct connection. In this way, a passenger routing is computed that favors direct connections. For the computation of this model we also implemented algorithms influenced by the results for the Steiner connectivity problem. We can compute with our model good solutions that minimize a weighted sum of line operating costs and passengers travel times. These solutions improve the solutions of an existing approach, that does not consider direct connections, by up to 17%. In contrast to a comprehensive approach, that considers every transfer and for which we could not even solve the root LP within 10 hours for large instances, the solutions of the new model, computed in the same time, are close to optimality (<1%) or even optimal for real world instances. In a project with the Verkehr in Potsdam GmbH to compute the line plan for 2010 we showed that our approach is applicable in practice and can be used to solve real world problems. Y1 - 2013 UR - www.zib.de/karbstein/scplpp.pdf SN - 978-3-8439-1062-0 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Hoppmann, Heide A1 - Karbstein, Marika T1 - A Configuration Model for the Line Planning Problem N2 - We propose a novel extended formulation for the line planning problem in public transport. It is based on a new concept of frequency configurations that account for all possible options to provide a required transportation capacity on an infrastructure edge. We show that this model yields a strong LP relaxation. It implies, in particular, general classes of facet defining inequalities for the standard model. T3 - ZIB-Report - 13-40 KW - combinatorial optimization KW - polyhedral combinatorics KW - line planning Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-41903 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Löbel, Andreas T1 - Der Schnellste Weg zum Ziel N2 - Wir geben eine Einführung in die Mathematik von und mit Wegen. Nicht auf dem kürzesten, aber auf einem hoffentlich kurzweiligen Weg! T3 - ZIB-Report - SC-99-32 KW - Kürzeste Wege KW - Kombinatorische Optimierung KW - Operations Research Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-4209 ER - TY - GEN A1 - Schenker, Sebastian A1 - Borndörfer, Ralf A1 - Skutella, Martin T1 - A novel partitioning of the set of non-dominated points N2 - We consider a novel partitioning of the set of non-dominated points for general multi-objective integer programs with $k$ objectives. The set of non-dominated points is partitioned into a set of non-dominated points whose efficient solutions are also efficient for some restricted subproblem with one less objective; the second partition comprises the non-dominated points whose efficient solutions are inefficient for any of the restricted subproblems. We show that the first partition has the nice property that it yields finite rectangular boxes in which the points of the second partition are located. T3 - ZIB-Report - 16-55 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61286 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Karbstein, Marika T1 - Metric Inequalities for Routings on Direct Connections with Application in Line Planning N2 - We consider multi-commodity flow problems in which capacities are installed on paths. In this setting, it is often important to distinguish between flows on direct connection routes, using single paths, and flows that include path switching. We derive a feasibility condition for path capacities supporting such direct connection flows similar to the feasibility condition for arc capacities in ordinary multi-commodity flows. The concept allows to solve large-scale real-world line planning problems in public transport including a novel passenger routing model that favors direct connections over connections with transfers. T3 - ZIB-Report - 15-07 KW - combinatorial optimization KW - integer programming KW - line planning KW - transfers KW - direct connection KW - metric inequalities Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53507 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Heismann, Olga T1 - Minimum Cost Hyperassignments with Applications to ICE/IC Rotation Planning N2 - Vehicle rotation planning is a fundamental problem in rail transport. It decides how the railcars, locomotives, and carriages are operated in order to implement the trips of the timetable. One important planning requirement is operational regularity, i.e., using the rolling stock in the same way on every day of operation. We propose to take regularity into account by modeling the vehicle rotation planning problem as a minimum cost hyperassignment problem (HAP). Hyperassignments are generalizations of assignments from directed graphs to directed hypergraphs. Finding a minimum cost hyperassignment is NP-hard. Most instances arising from regular vehicle rotation planning, however, can be solved well in practice. We show that, in particular, clique inequalities strengthen the canonical LP relaxation substantially. T3 - ZIB-Report - 11-46 KW - hyperassignments KW - vehicle rotation planning Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14564 UR - http://link.springer.com/chapter/10.1007%2F978-3-642-29210-1_10 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Karbstein, Marika T1 - A Note on Menger's Theorem for Hypergraphs N2 - We prove the companion Theorem to Menger's Theorem for hypergraphs. This result gives rise to a new class of blocking pairs of ideal matrices, that generalize the incidence matrices of cuts and paths. T3 - ZIB-Report - 12-03 KW - ideal matrices Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14471 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Karbstein, Marika ED - Delling, Daniel ED - Liberti, Leo T1 - A Direct Connection Approach to Integrated Line Planning and Passenger Routing T2 - ATMOS 2012 - 12th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems N2 - The treatment of transfers is a major challenge in line planning. Existing models either route passengers and lines sequentially, and hence disregard essential degrees of freedom, or they are of extremely large scale, and seem to be computationally intractable. We propose a novel direct connection approach that allows an integrated optimization of line and passenger routing, including accurate estimates of the number of direct travelers, for large-scale real-world instances. T3 - ZIB-Report - 12-29 KW - combinatorial optimization KW - integer programming KW - line planning KW - transfers Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15812 SN - 1438-0064 VL - 25 SP - 47 EP - 57 PB - Schloss Dagstuhl - Leibniz-Zentrum für Informatik ER - TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika T1 - Models for Line Planning with Transfers N2 - We propose a novel integer programming approach to transfer minimization for line planning problems in public transit. The idea is to incorporate penalties for transfers that are induced by “connection capacities” into the construction of the passenger paths. We show that such penalties can be dealt with by a combination of shortest and constrained shortest path algorithms such that the pricing problem for passenger paths can be solved efficiently. Connection capacity penalties (under)estimate the true transfer times. This error is, however, not a problem in practice. We show in a computational comparison with two standard models on a real-world scenario that our approach can be used to minimize passenger travel and transfer times for large-scale line planning problems with accurate results. T3 - ZIB-Report - 10-11 KW - Linienplanung KW - Umsteigen KW - Ganzzahlige Programmierung KW - Kombinatorische Optimierung KW - line planning KW - transfers KW - integer programming KW - combinatorial optimization Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11742 SN - 1438-0064 ER -