TY - GEN A1 - Borndörfer, Ralf A1 - Eisenblätter, Andreas A1 - Grötschel, Martin A1 - Martin, Alexander T1 - The Orientation Model for Frequency Assignment Problems N2 - Mobile telecommunication systems establish a large number of communication links with a limited number of available frequencies; reuse of the same or adjacent frequencies on neighboring links causes interference. The task to find an assignment of frequencies to channels with minimal interference is the frequency assignment problem. The frequency assignment problem is usually treated as a graph coloring problem where the number of colors is minimized, but this approach does not model interference minimization correctly. We give in this paper a new integer programming formulation of the frequency assignment problem, the orientation model, and develop a heuristic two-stage method to solve it. The algorithm iteratively solves an outer and an inner optimization problem. The outer problem decides for each pair of communication links which link gets the higher frequency and leads to an acyclic subdigraph problem with additional longest path restrictions. The inner problem to find an optimal assignment respecting an orientation leads to a min-cost flow problem. T3 - ZIB-Report - TR-98-01 KW - Minimum-Cost Flow Problems KW - Cellular Radio Telephone Systems KW - Frequency Assignment Problem KW - Integer Programming Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-5627 ER - TY - GEN A1 - Wagler, Annegret T1 - Antiwebs are Rank-Perfect N2 - \We discuss a nested collection of three superclasses of perfect graphs: near-perfect, rank-perfect, and weakly rank-perfect graphs. For that, we start with the description of the stable set polytope for perfect graphs and allow stepwise more general facets for the stable set polytopes of the graphs in each superclass. Membership in those three classes indicates how far a graph is away from being perfect. We investigate for webs and antiwebs to which of the three classes they belong. We provide a complete description of the facets of the stable set polytope for antiwebs (with help of a result due to Shepherd on near-bipartite graphs). The main result is that antiwebs are rankperfect. T3 - ZIB-Report - 02-07 KW - relaxations of perfect graphs KW - antiwebs KW - stable set polytope Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6742 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Löbel, Andreas A1 - Weider, Steffen T1 - Integrierte Umlauf- und Dienstplanung im Öffentlichen Nahverkehr N2 - Wir beschreiben einen Ansatz zur integrierten Umlauf- und Dienstplanung im öffentlichen Nahverkehr. Der Ansatz zielt auf die Verbesserung des Gesamtwirkungsgrades dieser beiden Planungsschritte und auf die besondere Planungsproblematik im Regionalverkehr. Wir entwickeln dazu mathematische Optimierungstechniken für den Einsatz in den Planungssystemen MICROBUS II und DIVA. T3 - ZIB-Report - 02-10 KW - Integrierte Umlauf- und Dienstplanung KW - Umlaufplanung KW - Dienstplanung KW - Optimierung KW - Regionalverkehr Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6773 ER - TY - GEN A1 - Zymolka, Adrian A1 - Koster, Arie M.C.A. A1 - Wessäly, Roland T1 - Transparent optical network design with sparse wavelength conversion N2 - We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse wavelength conversion for efficient use of the capacities. In this paper, we investigate this extensive optical network design task. Using a flexible device-based model, we present an integer programming formulation that supports greenfield planning as well as expansion planning on top of an existing network. As solution method, we propose a suitable decomposition approach that separates the wavelength assignment from the dimensioning and routing. Our method in particular provides a lower bound on the total cost which allows to rate the solution quality. Computational experiments on realistic networks approve the solution approach to be appropriate. T3 - ZIB-Report - 02-34 KW - optical network design KW - wavelength conversion KW - integer programming Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7017 ER - TY - GEN A1 - Byun, Chul-Young T1 - Lower Bounds for Large-Scale Set Partitioning Problems N2 - In this work we concentrate on developing methods which determine good lower bounds for set partitioning problems (SPP) in an appropriate amount of time. We found out that it makes sense to use the Lagrangian relaxation method for this task. The Lagrangian relaxed problem of SPP has a simple structure, which leads to algorithms and heuristics, whose total complexity per iteration depends linearly on the number of non-zeros of the problem matrix of SPP. In contrast, other methods like simplex methods or interior point methods have a complexity of higher order. Because the problem matrices of our tested instances are sparse, the linear dependence becomes an advantage for the algorithms and heuristics mentioned above. As a reference for the state-of-the-art we have applied the dual simplex method and the barrier function method, implemented in CPLEX. The methods, which we have developed and compared with those of CPLEX, are SBM, CAM, CCBM, and CBM. SBM is a subgradient bundle method derived from the basic subgradient method, which is a global convergent method for determining the maximum of concave functions. CAM is a coordinate ascent method, where the convex coordinate bundle method CCBM and the coordinate bundle method CBM are derivatives from CAM. We observed that the basic subgradient and the coordinate ascent method are improved if bundling techniques can be used. But the motivation for bundling differs for both approaches. In the former case bundling helps to approximate a minimum norm subgradient, which provides a steepest ascent direction, in order to speed up the performance. In the latter case bundling enables proceeding along directions, which are not restricted on the coordinate directions. By this the performance is accelerated. Among all used techniques stabilization is worth mentioning. Stabilization improves the performance especially at the beginning by avoiding too big steps during the proceeding. This leads to a more stabilized progression. Stabilization was successfully applied to SBM, CAM, CCBM, and CBM. As an overall result we conclude the following: \begin{enumerate} \item CPLEX computes the optimal objective values, whereas SBM and CBM has on average a gap of under $1.5\%$. \item In comparison to CPLEX baropt, SBM, CAM, and CBM the algorithm CCBM has a slow convergence because of the convex combination of ascent coordinate directions. An alternative is to relax the convex combination to a simple sum of the corresponding directions. This idea is realized in CBM. \item If we focus on the running time rather than on optimality then CBM is on average the fastest algorithm. \end{enumerate} Note that methods like SBM or CBM are applied on static SPP instances in order to determine a good lower bound. For solving SPP we need dynamical methods. Due to the complex topic of dynamical methods we will not discuss them, but a certain technique is worth mentioning. It is called column generation. We have indicated that this technique needs good Lagrangian multipliers of the corresponding SPP instances in order to generate further columns (in our case duties), which are added to the current SPP instance. Those multipliers are by-products of methods like our six considered methods. Due to the large number of such generation steps the running time depends on the computation time of these methods. Therefore, CBM fits more to this technique than CPLEX baropt or SBM. To sum it up it can be said that applications such as a duty scheduling can be described as set partitioning problems, whose lower bound can be solved by simplex, interior points, subgradient, or coordinate ascent methods. It turns out that the interior points method CPLEX baropt and the heuristic CBM have good performances. Furthermore, good Lagrangian multipliers, which are by-products of these methods, can be used by techniques like column generation. For this particular technique it also turns out that among our tested algorithms CBM is the most efficient one. In general we can state that real-world applications, which have to solve a large number of Lagrangian relaxed SPP instances can improve their performance by using CBM. T3 - ZIB-Report - 01-06 KW - Set Partitioning KW - Lagrangean Relaxation KW - Dual Ascent Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6321 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Schelten, Uwe A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - A Column Generation Approach to Airline Crew Scheduling N2 - The airline crew scheduling problem deals with the construction of crew rotations in order to cover the flights of a given schedule at minimum cost. The problem involves complex rules for the legality and costs of individual pairings and base constraints for the availability of crews at home bases. A typical instance considers a planning horizon of one month and several thousand flights. We propose a column generation approach for solving airline crew scheduling problems that is based on a set partitioning model. We discuss algorithmic aspects such as the use of bundle techniques for the fast, approximate solution of linear programs, a pairing generator that combines Lagrangean shortest path and callback techniques, and a novel rapid branching'' IP heuristic. Computational results for a number of industrial instances are reported. Our approach has been implemented within the commercial crew scheduling system NetLine/Crew of Lufthansa Systems Berlin GmbH. T3 - ZIB-Report - 05-37 KW - Integer Programming KW - Airline Crew Scheduling KW - Branch and Generate Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8713 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian T1 - Provably Good Solutions for Wavelength Assignment in Optical Networks N2 - In this paper, we study the minimum converter wavelength assignment problem in optical networks. To benchmark the quality of solutions obtained by heuristics, we derive an integer programming formula tion by generalizing the formulation of Mehrotra and Trick (1996) for the vertex coloring problem. To handle the exponential number of variables, we propose a column generation approach. Computational experiments show that the value of the linear relaxation states a good lower bound and can often prove optimality of the best solution generated heuristically. T3 - ZIB-Report - 04-40 KW - wavelength assignment KW - integer programming KW - column generation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8155 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian T1 - Linear Programming Lower Bounds for Minimum Converter Wavelength Assignment in Optical Networks N2 - In this paper, we study the conflict-free assignment of wavelengths to lightpaths in an optical network with the opportunity to place wavelength converters. To benchmark heuristics for the problem, we develop integer programming formulations and study their properties. Moreover, we study the computational performance of the column generation algorithm for solving the linear relaxation of the most promising formulation. In many cases, a non-zero lower bound on the number of required converters is generated this way. For several instances, we in fact prove optimality since the lower bound equals the best known solution value. T3 - ZIB-Report - 04-41 KW - optical networks KW - wavelength assignment KW - integer programming Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8160 ER - TY - GEN A1 - Wagler, Annegret T1 - Relaxing Perfectness: Which Graphs are 'Almost' Perfect? N2 - For all perfect graphs, the stable set polytope STAB$(G)$ coincides with the fractional stable set polytope QSTAB$(G)$, whereas STAB$(G) \subset$ QSTAB$(G)$ holds iff $G$ is imperfect. Padberg asked in the early seventies for ``almost'' perfect graphs. He characterized those graphs for which the difference between STAB$(G)$ and QSTAB$(G)$ is smallest possible. We develop this idea further and define three polytopes between STAB$(G)$ and QSTAB$(G)$ by allowing certain sets of cutting planes only to cut off all the fractional vertices of QSTAB$(G)$. The difference between QSTAB$(G)$ and the largest of the three polytopes coinciding with STAB$(G)$ gives some information on the stage of imperfectness of the graph~$G$. We obtain a nested collection of three superclasses of perfect graphs and survey which graphs are known to belong to one of those three superclasses. This answers the question: which graphs are ``almost'' perfect? T3 - ZIB-Report - 02-03 KW - perfect graph KW - stable set polytope KW - relaxations Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6700 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Koster, Arie M.C.A. A1 - Wallbaum, Randolf A1 - Wessäly, Roland T1 - Load Balancing in Signaling Transfer Points N2 - Signaling is crucial to the operation of modern telecommunication networks. A breakdown in the signaling infrastructure typically causes customer service failures, incurs revenue losses, and hampers the company image. Therefore, the signaling network has to be highest reliability and survivability. This in particular holds for the routers in such a network, called \textit{signaling transfer points\/} (STPs). The robustness of an STP can be improved by equally distributing the load over the internal processing units. Several constraints have to be taken into account. The load of the links connected to a processing unit changes over time introducing an imbalance of the load. In this paper, we show how integer linear programming can be applied to reduce the imbalance within an STP, while keeping the number of changes small. Two alternative models are presented. Computational experiments validate the integer programming approach in practice. The GSM network operator E-Plus saves substantial amounts of time and money by employing the proposed approach. T3 - ZIB-Report - 02-50 KW - Signaling network KW - STP KW - load-balancing KW - integer programming KW - computations Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7179 ER -