TY - THES A1 - Harks, Tobias T1 - Multicommodity Routing Problems-Selfish Behavior and Online Aspects- N2 - In this thesis, we study multicommodity routing problems in networks, in which commodities have to be routed from source to destination nodes. Such problems model for instance the traffic flows in street networks, data flows in the Internet, or production flows in factories. In most of these applications, the quality of a flow depends on load dependent cost functions on the edges of the given network. The total cost of a flow is usually defined as the sum of the arc cost of the network. An optimal flow minimizes this cost. A main focus of this thesis is to investigate online multicommodity routing problems in networks, in which commodities have to be routed sequentially. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes (fractionally) each commodity by minimizing a convex cost function that depends on the previously routed flow. We present a competitive analysis of this algorithm and prove upper bounds of (d+1)^(d+1) for polynomial price functions with nonnegative coefficients and maximum degree d. For networks with two nodes and parallel arcs, we show that this algorithm returns an optimal solution. Without restrictions on the price functions and network, no algorithm is competitive. We also investigate a variant in which the demands have to be routed unsplittably. In this case, it is NP-hard to compute the offline optimum. Furthermore, we study selfish routing problems (network games). In a network game, players route demand in a network with minimum cost. In this setting, we study the quality of Nash equilibria compared to the the system optimum (price of anarchy) in network games with nonatomic and atomic players and spittable flow. As a main result, we prove upper bounds on the price of anarchy for polynomial latency functions with nonnegative coefficients and maximum degree d, which improve upon the previous best ones. N2 - Diese Arbeit befasst sich mit Mehrgüterflussproblemen, in denen Güter mit einer bestimmten Rate durch ein gegebenes Netzwerk geleitet werden müssen. Mithilfe von Mehrgüterflussproblemen können zum Beispiel Verkehrsflüsse in Strassenverkehrsnetzen oder im Internet modelliert werden. In diesen Anwendungen wird die Effizienz von Routenzuweisungen für Güter durch lastabhängige Kostenfunktionen auf den Kanten eines gegebenen Netzwerks definiert. Die Gesamtkosten eines Mehrgüterflüsses sind durch die Summe der Kosten auf den Kanten definiert. Ein optimaler Mehrgüterfluss minimiert diese Gesamtkosten. Ein wesentlicher Bestandteil dieser Arbeit ist die Untersuchung sogenannter Online Algorithmen, die Routen für bekannte Güternachfragen berechnen, ohne vollständiges Wissen über zukünftige Güternachfragen zu haben. Es konnte ein Online Algorithmus gefunden werden, dessen Gesamtkosten für polynomielle Kostenfunktionen mit endlichem Grad nicht beliebig von denen einer optimalen Lösung abweichen. Für die Berechung einer optimalen Lösung müssen alle Güternachfragen a priori vorliegen. Dieses Gütekriterium gilt unabhängig von der gewählten Netzwerktopologie oder der Eingabesequenz von Gütern. Desweiteren befasst sich diese Arbeit mit der Effizienz egoistischer Routenwahl einzelner Nutzer verglichen zu einer optimalen Routenwahl. Egoistisches Verhalten von Nutzern kann mithilfe von nichtkooperativer Spieltheorie untersucht werden. Nutzer werden als strategisch agierende Spieler betrachtet, die ihren Profit maximieren. Als Standardwerkzeug zur Analyse solcher Spiele hat sich das Konzept des Nash Gleichgewichts bewährt. Das Nash Gleichweicht beschreibt eine stabile Strategieverteilung der Spieler, in der kein Spieler einen höheren Profit erzielen kann, wenn er einseitig seine Strategie ändert. Als Hauptergebnis dieser Arbeit konnte für polynomielle Kostenfunktionen mit endlichem Grad gezeigt werden, dass die Gesamtkosten eines Nash Gleichgewichts für sogennante atomare Spieler, die einen diskreten Anteil der gesamten Güternachfrage kontrollieren, nicht beliebig von den Gesamtkosten einer optimalen Lösung abweichen. In this thesis, we study multicommodity routing problems in networks, in which commodities have to be routed from source to destination nodes. Such problems model for instance the traffic flows in street networks, data flows in the Internet, or production flows in factories. In most of these applications, the quality of a flow depends on load dependent cost functions on the edges of the given network. The total cost of a flow is usually defined as the sum of the arc cost of the network. An optimal flow minimizes this cost. A main focus of this thesis is to investigate online multicommodity routing problems in networks, in which commodities have to be routed sequentially. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes (fractionally) each commodity by minimizing a convex cost function that depends on the previously routed flow. We present a competitive analysis of this algorithm and prove upper bounds of (d+1)^(d+1) for polynomial price functions with nonnegative coefficients and maximum degree d. For networks with two nodes and parallel arcs, we show that this algorithm returns an optimal solution. Without restrictions on the price functions and network, no algorithm is competitive. We also investigate a variant in which the demands have to be routed unsplittably. In this case, it is NP-hard to compute the offline optimum. Furthermore, we study selfish routing problems (network games). In a network game, players route demand in a network with minimum cost. In this setting, we study the quality of Nash equilibria compared to the the system optimum (price of anarchy) in network games with nonatomic and atomic players and spittable flow. As a main result, we prove upper bounds on the price of anarchy for polynomial latency functions with nonnegative coefficients and maximum degree d, which improve upon the previous best ones. KW - Mehrgueterflussprobleme KW - Online Optimierung KW - Algorithmische Spieltheorie. KW - Multicommodity Flow KW - Online Optimization KW - Algorithmic Game Theory Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10426 SN - 3867273596 ER - TY - GEN A1 - Heinz, Stefan A1 - Schlechte, Thomas A1 - Stephan, Rüdiger A1 - Winkler, Michael T1 - Solving steel mill slab design problems N2 - The steel mill slab design problem from the CSPLIB is a combinatorial optimization problem motivated by an application of the steel industry. It has been widely studied in the constraint programming community. Several methods were proposed to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called the multiple knapsack problem with color constraints, originated from the same industrial problem, was discussed in the integer programming community. In particular, a simple integer program for this problem has been given by Forrest et al. The aim of this paper is to bring these different studies together. Moreover, we adapt the model of Forrest et al. for the steel mill slab design problem. Using this model and a state-of-the-art integer program solver all instances of the steel mill slab library can be solved efficiently to optimality. We improved, thereby, the solution values of 76 instances compared to previous results. Finally, we consider a recently introduced variant of the steel mill slab design problem, where within all solutions which minimize the leftover one is interested in a solution which requires a minimum number of slabs. For that variant we introduce two approaches and solve all instances of the steel mill slab library with this slightly changed objective function to optimality. T3 - ZIB-Report - 11-38 KW - steel mill slab design problem KW - multiple knapsack problem with color constraints KW - integer programming KW - set partitioning KW - binpacking with side constraints Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14089 SN - 1438-0064 ER - TY - THES A1 - Gamrath, Gerald T1 - Generic Branch-Cut-and-Price N2 - In this thesis, we present the theoretical background, implementational details and computational results concerning the generic branch-cut-and-price solver GCG. KW - mixed-integer programming KW - column generation KW - branch-and-price Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57543 ER - TY - GEN A1 - Sagnol, Guillaume A1 - Borndörfer, Ralf A1 - Grima, Mickaël A1 - Seeling, Matthes A1 - Spies, Claudia T1 - Robust Allocation of Operating Rooms with Lognormal case Durations N2 - The problem of allocating operating rooms (OR) to surgical cases is a challenging task, involving both combinatorial aspects and uncertainty handling. In this article, we formulate this problem as a job shop scheduling problem, in which the job durations follow a lognormal distribution. We propose to use a cutting-plane approach to solve a robust version of this optimization problem. To this end, we develop an algorithm based on fixed-point iterations to solve the subproblems that identify worst-case scenarios and generate cut inequalities. The procedure is illustrated with numerical experiments based on real data from a major hospital in Berlin. T3 - ZIB-Report - 16-16 KW - robust optimization KW - lognormal duration KW - Hilbert's projective metric Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-58497 UR - http://www.pms2016.com/congreso/ficha.en.html SN - 1438-0064 ER - TY - GEN A1 - Sagnol, Guillaume A1 - Barner, Christoph A1 - Borndörfer, Ralf A1 - Grima, Mickaël A1 - Seeling, Matthes A1 - Spies, Claudia A1 - Wernecke, Klaus T1 - Robust Allocation of Operating Rooms: a Cutting Plane Approach to handle Lognormal Case Durations N2 - The problem of allocating operating rooms (OR) to surgical cases is a challenging task, involving both combinatorial aspects and uncertainty handling. We formulate this problem as a parallel machines scheduling problem, in which job durations follow a lognormal distribution, and a fixed assignment of jobs to machines must be computed. We propose a cutting-plane approach to solve the robust counterpart of this optimization problem. To this end, we develop an algorithm based on fixed-point iterations that identifies worst-case scenarios and generates cut inequalities. The main result of this article uses Hilbert's projective geometry to prove the convergence of this procedure under mild conditions. We also propose two exact solution methods for a similar problem, but with a polyhedral uncertainty set, for which only approximation approaches were known. Our model can be extended to balance the load over several planning periods in a rolling horizon. We present extensive numerical experiments for instances based on real data from a major hospital in Berlin. In particular, we find that: (i) our approach performs well compared to a previous model that ignored the distribution of case durations; (ii) compared to an alternative stochastic programming approach, robust optimization yields solutions that are more robust against uncertainty, at a small price in terms of average cost; (iii) the \emph{longest expected processing time first} (LEPT) heuristic performs well and efficiently protects against extreme scenarios, but only if a good prediction model for the durations is available. Finally, we draw a number of managerial implications from these observations. T3 - ZIB-Report - 16-18 KW - robust optimization KW - lognormal duration KW - Hilbert's projective metric Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-58502 SN - 1438-0064 ER - TY - GEN A1 - Weber, Tobias A1 - Sager, Sebastian A1 - Gleixner, Ambros T1 - Solving Quadratic Programs to High Precision using Scaled Iterative Refinement N2 - Quadratic optimization problems (QPs) are ubiquitous, and solution algorithms have matured to a reliable technology. However, the precision of solutions is usually limited due to the underlying floating-point operations. This may cause inconveniences when solutions are used for rigorous reasoning. We contribute on three levels to overcome this issue. First, we present a novel refinement algorithm to solve QPs to arbitrary precision. It iteratively solves refined QPs, assuming a floating-point QP solver oracle. We prove linear convergence of residuals and primal errors. Second, we provide an efficient implementation, based on SoPlex and qpOASES that is publicly available in source code. Third, we give precise reference solutions for the Maros and Mészáros benchmark library. T3 - ZIB-Report - 18-04 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68152 SN - 1438-0064 ER -