TY - GEN A1 - Gamrath, Gerald A1 - Schubert, Christoph T1 - Measuring the impact of branching rules for mixed-integer programming N2 - Branching rules are an integral component of the branch-and-bound algorithm typically used to solve mixed-integer programs and subject to intense research. Different approaches for branching are typically compared based on the solving time as well as the size of the branch-and-bound tree needed to prove optimality. The latter, however, has some flaws when it comes to sophisticated branching rules that do not only try to take a good branching decision, but have additional side-effects. We propose a new measure for the quality of a branching rule that distinguishes tree size reductions obtained by better branching decisions from those obtained by such side-effects. It is evaluated for common branching rules providing new insights in the importance of strong branching. T3 - ZIB-Report - 17-34 KW - mixed-integer programming KW - branch-and-bound KW - branching rule KW - strong branching Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64722 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald T1 - Improving strong branching by domain propagation N2 - One of the essential components of a branch-and-bound based mixed-integer linear programming (MIP) solver is the branching rule. Strong branching is a method used by many state-of-the-art branching rules to select the variable to branch on. It precomputes the dual bounds of potential child nodes by solving auxiliary linear programs (LPs) and thereby helps to take good branching decisions that lead to a small search tree. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Domain propagation is a technique usually used at every node of the branch-and-bound tree to tighten the local domains of variables. Computational experiments on standard MIP instances indicate that our improved strong branching method significantly improves the quality of the predictions and causes almost no additional effort. For a full strong branching rule, we are able to obtain substantial reductions of the branch-and-bound tree size as well as the solving time. Moreover, also the state-of-the-art hybrid branching rule can be improved this way. This paper extends previous work by the author published in the proceedings of the CPAIOR 2013. T3 - ZIB-Report - 13-47 KW - mixed-integer programming KW - branch-and-bound KW - branching rule KW - variable selection KW - strong branching KW - domain propagation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42546 SN - 1438-0064 ER -