TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten T1 - Integer programming approaches to access and backbone IP-network planning N2 - In this article we study the problem of designing a nation-wide communication network. Such networks usually consist of an access layer, a backbone layer, and maybe several intermediate layers. The nodes of each layer must be connected to those of the next layer in a tree-like fashion. The backbone layer has to satisfy certain survivability and routing constraints. Given the node locations, the demands between them, the possible connections and hardware configurations, and various other technical and administrational constraints, the goal is to decide, which node is assigned to which network level, how the nodes are connected, what hardware must be installed, and how traffic is routed in the backbone. Mixed integer linear programming models and solution methods are presented for both the access and the backbone network design problem. The focus is on the design of IP-over-SDH networks, but the access network design model and large parts of the backbone network design models are general and also applicable for other types of communication networks. Results obtained with these methods in the planning of the German research network are presented. T3 - ZIB-Report - 02-41 KW - Network design KW - Traffic enineering KW - Internet routing KW - Mixed-integer programming Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7081 ER - TY - GEN A1 - Bley, Andreas T1 - Inapproximability Results for the Inverse Shortest Paths Problem with Integer Length and Unique Shortest Paths N2 - We study the complexity of two Inverse Shortest Paths (ISP) problems with integer arc lengths and the requirement for uniquely determined shortest paths. Given a collection of paths in a directed graph, the task is to find positive integer arc lengths such that the given paths are uniquely determined shortest paths between their respective terminals. The first problem seeks for arc lengths that minimize the length of the longest of the prescribed paths. In the second problem, the length of the longest arc is to be minimized. We show that it is $np-hard$ to approximate the minimal longest path length within a factor less than $8/7$ or the minimal longest arc length within a factor less than $9/8$. This answers the (previously) open question whether these problems are $np-hard$ or not. We also present a simple algorithm that achieves an $\mathcal{O}(|V|)$-approximation guarantee for both variants. Both ISP problems arise in the planning of telecommunication networks with shortest path routing protocols. Our results imply that it is $\mathcal{NP}$-hard to decide whether a given path set can be realized with a real shortest path routing protocol such as OSPF, IS-IS, or RIP. T3 - ZIB-Report - 05-04 KW - Inverse Shortest Paths KW - Computational Complexity KW - Approximation KW - Shortest Path Routing Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8388 ER - TY - GEN A1 - Bley, Andreas A1 - Pattloch, Marcus T1 - Modellierung und Optimierung der X-WiN Plattform N2 - In diesem Artikel werden die Optimierungsmodelle und -verfahren beschrieben, die bei der Planung des Kernnetzes und der Zugangsinfrastruktur des X-WiN verwendet wurden. T3 - ZIB-Report - 05-21 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8551 ER - TY - GEN A1 - Bley, Andreas T1 - A Lagrangian Approach for Integrated Network Design and Routing in IP Networks N2 - We consider the problem of designing a network that employs a non-bifurcated shortest path routing protocol. The network's nodes and the set of potential links are given together with a set of forecasted end-to-end traffic demands. All relevant hardware components installable at links or nodes are considered. The goal is to simultaneously choose the network's topology, to decide which hardware components to install on which links and nodes, and to find appropriate routing weights such that the overall network cost is minimized. In this paper, we present a mathematical optimization model for this problem and an algorithmic solution approach based on a Lagrangian relaxation. Computational results achieved with this approach for several real-world network planning problems are reported. T3 - ZIB-Report - 03-29 KW - Network Planning KW - Routing KW - IP Routing KW - Lagrangian relaxation Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7515 ER - TY - GEN A1 - Bley, Andreas T1 - On the Hardness of Finding Small Shortest Path Routing Conflicts N2 - Nowadays most data networks use shortest path protocols such as OSPF or IS-IS to route traffic. Given administrative routing lengths for the links of a network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. One of the most fundamental problems in planning shortest path networks is to decide whether a given set of routing paths forms a valid routing and, if this is not the case, to find a small subset of the given paths that cannot be shortest paths simultaneously for any routing lengths. In this paper we show that it is NP-hard to approximate the size of the smallest shortest path conflict by a factor less than 7/6. T3 - ZIB-Report - 09-15 KW - shortest path routing KW - computational complexity Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11276 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas T1 - An Integer Programming Algorithm for Routing Optimization in IP Networks N2 - Most data networks nowadays use shortest path protocols to route the traffic. Given administrative routing lengths for the links of the network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. In this paper, we present an integer programming algorithm for the minimum congestion unsplittable shortest path routing problem, which arises in the operational planning of such networks. Given a capacitated directed graph and a set of communication demands, the goal is to find routing lengths that define a unique shortest path for each demand and minimize the maximum congestion over all links in the resulting routing. We illustrate the general decomposition approach our algorithm is based on, present the integer and linear programming models used to solve the master and the client problem, and discuss the most important implementational aspects. Finally, we report computational results for various benchmark problems, which demonstrate the efficiency of our algorithm. T3 - ZIB-Report - 08-30 KW - Shortest Path Routing KW - Integer Programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10814 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas T1 - Approximability of Unsplittable Shortest Path Routing Problems N2 - In this paper, we discuss the relation of unsplittable shortest path routing (USPR) to other routing schemes and study the approximability of three USPR network planning problems. Given a digraph $D=(V,A)$ and a set $K$ of directed commodities, an USPR is a set of flow paths $\Phi_{(s,t)}$, $(s,t)\in K$, such that there exists a metric $\lambda=(\lambda_a)\in \mathbb{Z}^A_+$ with respect to which each $\Phi_{(s,t)}$ is the unique shortest $(s,t)$-path. In the \textsc{Min-Con-USPR} problem, we seek for an USPR that minimizes the maximum congestion over all arcs. We show that this problem is hard to approximate within a factor of $\mathcal{O}(|V|^{1-\epsilon})$, but easily approximable within min$(|A|,|K|)$ in general and within $\mathcal{O}(1)$ if the underlying graph is an undirected cycle or a bidirected ring. We also construct examples where the minimum congestion that can be obtained by USPR is a factor of $\Omega(|V|^2)$ larger than that achievable by unsplittable flow routing or by shortest multi-path routing, and a factor of $\Omega(|V|)$ larger than by unsplittable source-invariant routing. In the CAP-USPR problem, we seek for a minimum cost installation of integer arc capacities that admit an USPR of the given commodities. We prove that this problem is $\mathcal{NP}$-hard to approximate within $2-\epsilon$ (even in the undirected case), and we devise approximation algorithms for various special cases. The fixed charge network design problem \textsc{Cap-USPR}, where the task is to find a minimum cost subgraph of $D$ whose fixed arc capacities admit an USPR of the commodities, is shown to be $\mathcal{NPO}$-complete. All three problems are of great practical interest in the planning of telecommunication networks that are based on shortest path routing protocols. Our results indicate that they are harder than the corresponding unsplittable flow or shortest multi-path routing problems. T3 - ZIB-Report - 06-02 KW - Shortest path routing KW - unsplittable flow KW - computational complexity KW - approximation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8968 ER - TY - THES A1 - Bley, Andreas T1 - Routing and Capacity Optimization for IP Networks N2 - This thesis is concerned with dimensioning and routing optimization problems for communication networks that employ a shortest path routing protocol such as OSPF, IS-IS, or RIP. These protocols are widely used in the Internet. With these routing protocols, all end-to-end data streams are routed along shortest paths with respect to a metric of link lengths. The network administrator can configure the routing only by modifying this metric. In this thesis we consider the unsplittable shortest path routing variant, where each communication demand must be sent unsplit through the network. This requires that all shortest paths are uniquely determined. The major difficulties in planning such networks are that the routing can be controlled only indirectly via the routing metric and that all routing paths depend on the same routing metric. This leads to rather complicated and subtle interdependencies among the paths that comprise a valid routing. In contrast to most other routing schemes, the paths for different communication demands cannot be configured independent of each other. Part I of the thesis is dedicated to the relation between path sets and routing metrics and to the combinatorial properties of those path sets that comprise a valid unsplittable shortest path routing. Besides reviewing known approaches to find a compatible metric for a given path set (or to prove that none exists) and discussing some properties of valid path sets, we show that the problem of finding a compatible metric with integer lengths as small as possible and the problem of finding a smallest possible conflict in the given path set are both NP-hard to approximate within a constant factor. In Part II of the thesis we discuss the relation between unsplittable shortest path routing and several other routing schemes and we analyze the computational complexity of three basic unsplittable shortest path routing problems. We show that the lowest congestion that can be obtained with unsplittable shortest path routing may significantly exceed that achievable with other routing paradigms and we prove several non-approximability results for unsplittable shortest path routing problems that are stronger than those for the corresponding unsplittable flow problems. In addition, we derive various polynomial time approximation algorithms for general and special cases of these problems. In Part III of the thesis we finally develop an integer linear programming approach to solve these and more realistic unsplittable shortest path routing problems to optimality. We present alternative formulations for these problems, discuss their strength and computational complexity, and show how to derive strong valid inequalities. Eventually, we describe our implementation of this solution approach and report on the numerical results obtained for real-world problems that came up in the planning the German National Research and Education Networks G-WiN and X-WiN and for several benchmark instances. N2 - Die Arbeit befasst sich mit der Kapazitäts- und Routenplanung für Kommunikationsnetze, die ein kürzeste-Wege Routingprotokoll verwenden. Diese Art von Protokollen ist im Internet weit verbreitet. Bei diesen Routingverfahren wird für jede Verbindung im Netz ein Längenwert festgelegt, diese Längen formen die sogenannte Routingmetrik. Die Routingwege der Kommunikationsbedarfe sind dann die jeweiligen kürzesten Wege bezüglich dieser Metrik. Bei der in der Arbeit untersuchten Variante dieser Routingprotokolle wird zusätzlich verlangt, dass es je Kommunikationsbedarf genau einen eindeutigen kürzesten Weg gibt. Die Schwierigkeit bei der Planung solcher Netze besteht darin, dass sich die Routingwege einerseits nur indirekt über die Routingmetrik beeinflussen lassen, andererseits aber alle Routingwege von der gleichen Metrik abhängen. Dadurch können die Wege verschiedener Kommunikationsanforderungen nicht wie bei anderen Routingverfahren unabhängig voneinander gewählt werden. Im erstem Teil der Arbeit werden der Zusammenhang zwischen gegebenen Wegesystemen und kompatiblen Routingmetriken sowie die Beziehungen der Wege eines zulässigen eindeutige-kürzeste-Wege-Routings untereinander untersucht. Dabei wird unter Anderem gezeigt, dass es NP-schwer ist, eine kompatible Metrik mit kleinstmöglichen Routinglängen zu einem gegebenen Wegesystem zu finden. Es wird auch bewiesen, dass das Finden eines kleinstmöglichen Konfliktes in einem gegebenen Wegesystem, zu dem keine kompatible Metrik existiert, NP-schwer ist. Im zweiten Teil der Arbeit wird die Approximierbarkeit von drei grundlegenden Netz- und Routenplanungsproblemen mit eindeutige-kürzeste-Wege-Routing untersucht. Für diese Probleme werden stärkere Nichtapproximierbarkeitsresultate als für die entsprechenden Einwege-Routing Probleme bewiesen und es werden verschiedene polynomiale Approximationsverfahren für allgemeine und Spezialfälle entworfen. Ausserdem wird die Beziehung zwischen eindeutige-kürzeste-Wege-Routing und anderen Routingverfahren diskutiert. Im dritten und letzten Teil der Arbeit wird ein (gemischt-) ganzzahliger Lösungsansatz für Planungsprobleme mit eindeutige-kürzeste-Wege-Routing vorgestellt. Für die im zweiten Teil diskutierten grundlegenden Netz- und Routenplanungsprobleme werden verschiedene (gemischt-) ganzzahlige lineare Modelle vorgestellt und es wird deren Lösbarkeit und die Stärke ihrer LP Relaxierungen untersucht. Es wird auch gezeigt, wie sich starke gültig Ungleichungen aus den in diesen Modellen enthalten Substrukturen ableiten lassen. Schlielich werden am Ende der Arbeit die Software-Implementierung dieses Lösungsverfahrens für eine praxisrelevante Verallgemeinerung der Planungsprobleme sowie die damit erzielten numerischen Ergebnisse vorgestellt und diskutiert. KW - kombinatorische Optimierung KW - gemischt-ganzzahlige Programmierung KW - kürzeste-Wege Routing KW - Approximationsalgorithmen KW - combinatorial optimization KW - mixed-integer programming KW - shortest path routing KW - approximation algorithms Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:83-opus-15530 SN - 978-3-86727-281-0 ER -