TY - GEN A1 - Zymolka, Adrian A1 - Koster, Arie M.C.A. A1 - Wessäly, Roland T1 - Transparent optical network design with sparse wavelength conversion N2 - We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse wavelength conversion for efficient use of the capacities. In this paper, we investigate this extensive optical network design task. Using a flexible device-based model, we present an integer programming formulation that supports greenfield planning as well as expansion planning on top of an existing network. As solution method, we propose a suitable decomposition approach that separates the wavelength assignment from the dimensioning and routing. Our method in particular provides a lower bound on the total cost which allows to rate the solution quality. Computational experiments on realistic networks approve the solution approach to be appropriate. T3 - ZIB-Report - 02-34 KW - optical network design KW - wavelength conversion KW - integer programming Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7017 ER - TY - GEN A1 - Hülsermann, Ralf A1 - Jäger, Monika A1 - Krumke, Sven A1 - Poensgen, Diana A1 - Rambau, Jörg A1 - Tuchscherer, Andreas T1 - Dynamic Routing Algorithms in Transparent Optical Networks An Experimental Study Based on Real Data N2 - Today's telecommunication networks are configured statically. Whenever a connection is established, the customer has permanent access to it. However, it is observed that usually the connection is not used continuously. At this point, dynamic provisioning could increase the utilization of network resources. WDM based Optical Transport Networks (OTNs) will shortly allow for fast dynamic network reconfiguration. This enables optical broadband leased line services on demand. Since service requests competing for network resources may lead to service blocking, it is vital to use appropriate strategies for routing and wavelength assignment in transparent optical networks. We simulate the service blocking probabilities of various dynamic algorithms for this problem using a well-founded traffic model for two realistic networks. One of the algorithms using shortest path routings performs best on all instances. Surprisingly, the tie-breaking rule between equally short paths in different wavelengths decides between success or failure. T3 - ZIB-Report - 02-35 KW - Dynamic Network Configuration KW - Routing and Wavelength Allocation KW - Transparent Optical Networks KW - Blocking Probability KW - Simulation Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7025 ER - TY - GEN A1 - Bley, Andreas A1 - Koch, Thorsten T1 - Integer programming approaches to access and backbone IP-network planning N2 - In this article we study the problem of designing a nation-wide communication network. Such networks usually consist of an access layer, a backbone layer, and maybe several intermediate layers. The nodes of each layer must be connected to those of the next layer in a tree-like fashion. The backbone layer has to satisfy certain survivability and routing constraints. Given the node locations, the demands between them, the possible connections and hardware configurations, and various other technical and administrational constraints, the goal is to decide, which node is assigned to which network level, how the nodes are connected, what hardware must be installed, and how traffic is routed in the backbone. Mixed integer linear programming models and solution methods are presented for both the access and the backbone network design problem. The focus is on the design of IP-over-SDH networks, but the access network design model and large parts of the backbone network design models are general and also applicable for other types of communication networks. Results obtained with these methods in the planning of the German research network are presented. T3 - ZIB-Report - 02-41 KW - Network design KW - Traffic enineering KW - Internet routing KW - Mixed-integer programming Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7081 ER - TY - GEN A1 - Eisenblätter, Andreas A1 - Fügenschuh, Armin A1 - Koch, Thorsten A1 - Koster, Arie M.C.A. A1 - Martin, Alexander A1 - Pfender, Tobias A1 - Wegel, Oliver A1 - Wessäly, Roland T1 - Modelling Feasible Network Configurations for UMTS N2 - A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations. T3 - ZIB-Report - 02-16 KW - UMTS KW - radio interface KW - network planning KW - configuration KW - perfect power control KW - mathematical model KW - mixed integer programming KW - MOMENTUM KW - IST-20 Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6837 ER - TY - GEN A1 - Krumke, Sven A1 - Poensgen, Diana T1 - Online Call Admission in Optical Networks with Larger Wavelength Demands N2 - In the problem of \emph{Online Call Admission in Optical Networks}, briefly called \textsc{oca}, we are given a graph $G=(V,E)$ together with a set of wavelengths~$W$ and a finite sequence $\sigma=r_1,r_2,\dots$ of calls which arrive in an online fashion. Each call~$r_j$ specifies a pair of nodes to be connected and an integral demand indicating the number of required lightpaths. A lightpath is a path in~$G$ together with a wavelength~$\lambda \in W$. Upon arrival of a call, an online algorithm must decide immediately and irrevocably whether to accept or to reject the call without any knowledge of calls which appear later in the sequence. If the call is accepted, the algorithm must provide the requested number of lightpaths to connect the specified nodes. The essential restriction is the wavelength conflict constraint: each wavelength is available only once per edge, which implies that two lightpaths sharing an edge must have different wavelengths. Each accepted call contributes a benefit equal to its demand to the overall profit. The objective in \textsc{oca} is to maximize the overall profit. Competitive algorithms for \textsc{oca} have been known for the special case where every call requests just a single lightpath. In this paper we present the first competitive online algorithms for the general case of larger demands. T3 - ZIB-Report - 02-22 KW - Call Admission KW - Routing and Wavelength Allocation KW - Optical Networks KW - Competitive Analysis KW - Colorability Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6890 ER - TY - THES A1 - Krumke, Sven T1 - Online Optimization: Competitive Analysis and Beyond N2 - Traditional optimization techniques assume, in general, knowledge of all data of a problem instance. There are many cases in practice, however, where decisions have to be made before complete information about the data is available. In fact, it may be necessary to produce a part of the problem solution as soon as a new piece of information becomes known. This is called an \emph{online situation}, and an algorithm is termed \emph{online}, if it makes a decision (computes a partial solution) whenever a new piece of data requests an action. \emph{Competitive analysis} has become a standard yardstick to measure the quality of online algorithms. One compares the solution produced by an online algorithm to that of an optimal (clairvoyant) offline algorithm. An online algorithm is called $c$-competitive if on every input the solution it produces has cost'' at most $c$~times that of the optimal offline algorithm. This situation can be imagined as a game between an online player and a malicious adversary. Although competitive analysis is a worst-case analysis and henceforth pessimistic, it often allows important insights into the problem structure. One can obtain an idea about what kind of strategies are promising for real-world systems and why. On the other hand there are also cases where the offline adversary is simply too powerful and allows only trivial competitiveness results. This phenomenon is called hitting the triviality barrier''. We investigate several online problems by means of competitive analysis. We also introduce new concepts to overcome the weaknesses of the standard approach and to go beyond the triviality barrier. T3 - ZIB-Report - 02-25 KW - competitive analysis KW - online optimization KW - online algorithm KW - approximation algorithm Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6925 ER - TY - THES A1 - Koch, Thorsten T1 - Rapid Mathematical Programming N2 - The thesis deals with the implementation and application of out-of-the-box tools in linear and mixed integer programming. It documents the lessons learned and conclusions drawn from five years of implementing, maintaining, extending, and using several computer codes to solve real-life industrial problems. By means of several examples it is demonstrated how to apply algebraic modeling languages to rapidly devise mathematical models of real-world problems. It is shown that today's MIP solvers are capable of solving the resulting mixed integer programs, leading to an approach that delivers results very quickly. Even though, problems are tackled that not long ago required the implementation of specialized branch-and-cut algorithms. In the first part of the thesis the modeling language Zimpl is introduced. Chapter 2 contains a complete description of the language. In the subsequent chapter details of the implementation are described. Both theoretical and practical considerations are discussed. Aspects of software engineering, error prevention, and detection are addressed. In the second part several real-world projects are examined that employed the methodology and the tools developed in the first part. Chapter 4 presents three projects from the telecommunication industry dealing with facility location problems. Chapter 5 characterizes questions that arise in UMTS planning. Problems, models, and solutions are discussed. Special emphasis is put on the dependency of the precision of the input data and the results. Possible reasons for unexpected and undesirable solutions are explained. Finally, the Steiner tree packing problem in graphs, a well-known hard combinatorial problem, is revisited. A formerly known, but not yet used model is applied to combine switchbox wire routing and via minimization. All instances known from the literature are solved by this approach, as are some newly generated bigger problem instances. T3 - ZIB-Report - 04-58 KW - Modelling Languages KW - Mixed Integer Programming KW - Steiner Tree Packing in Graphs KW - Location Planning in Telecommunications KW - UMTS Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8346 ER - TY - GEN A1 - Bley, Andreas T1 - Inapproximability Results for the Inverse Shortest Paths Problem with Integer Length and Unique Shortest Paths N2 - We study the complexity of two Inverse Shortest Paths (ISP) problems with integer arc lengths and the requirement for uniquely determined shortest paths. Given a collection of paths in a directed graph, the task is to find positive integer arc lengths such that the given paths are uniquely determined shortest paths between their respective terminals. The first problem seeks for arc lengths that minimize the length of the longest of the prescribed paths. In the second problem, the length of the longest arc is to be minimized. We show that it is $np-hard$ to approximate the minimal longest path length within a factor less than $8/7$ or the minimal longest arc length within a factor less than $9/8$. This answers the (previously) open question whether these problems are $np-hard$ or not. We also present a simple algorithm that achieves an $\mathcal{O}(|V|)$-approximation guarantee for both variants. Both ISP problems arise in the planning of telecommunication networks with shortest path routing protocols. Our results imply that it is $\mathcal{NP}$-hard to decide whether a given path set can be realized with a real shortest path routing protocol such as OSPF, IS-IS, or RIP. T3 - ZIB-Report - 05-04 KW - Inverse Shortest Paths KW - Computational Complexity KW - Approximation KW - Shortest Path Routing Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8388 ER - TY - GEN A1 - Koster, Arie M.C.A. T1 - Wavelength Assignment in Multi-Fiber WDM Networks by Generalized Edge Coloring N2 - In this paper, we study wavelength assignment problems in multi-fiber WDM networks. We focus on the special case that all lightpaths have at most two links. This in particular holds in case the network topology is a star. As the links incident to a specific node in a meshed topology form a star subnetwork, results for stars are also of interest for general meshed topologies. We show that wavelength assignment with at most two links per lightpath can be modeled as a generalized edge coloring problem. By this relation, we show that for a network with an even number of fibers at all links and at most two links per lightpath, all lightpaths can be assigned a wavelength without conversion. Moreover, we derive a lower bound on the number of lightpaths to be converted for networks with arbitrary numbers of fibers at the links. A comparison with linear programming lower bounds reveals that the bounds coincide for problems with at most two links per lightpath. For meshed topologies, the cumulative lower bound over all star subnetworks equals the best known solution value for all realistic wavelength assignment instances available, by this proving optimality. T3 - ZIB-Report - 05-13 KW - wavelength assignment KW - optical networks KW - graph theory KW - combinatorial optimization KW - integer programming Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8478 ER - TY - GEN A1 - Koster, Arie M.C.A. A1 - Zymolka, Adrian T1 - Provably Good Solutions for Wavelength Assignment in Optical Networks N2 - In this paper, we study the minimum converter wavelength assignment problem in optical networks. To benchmark the quality of solutions obtained by heuristics, we derive an integer programming formula tion by generalizing the formulation of Mehrotra and Trick (1996) for the vertex coloring problem. To handle the exponential number of variables, we propose a column generation approach. Computational experiments show that the value of the linear relaxation states a good lower bound and can often prove optimality of the best solution generated heuristically. T3 - ZIB-Report - 04-40 KW - wavelength assignment KW - integer programming KW - column generation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8155 ER -