TY - GEN A1 - Borndörfer, Ralf A1 - Neumann, Marika A1 - Pfetsch, Marc T1 - Angebotsplanung im öffentlichen Nahverkehr T1 - Service Design in Public Transport N2 - Die Angebotsplanung im öffentlichen Nahverkehr umfasst die Aufgaben der Netz-, Linien-,Fahr- und Preisplanung. Wir stellen zwei mathematische Optimierungsmodelle zur Linien- und Preisplanung vor. Wir zeigen anhand von Berechnungen für die Verkehrsbetriebe in Potsdam(ViP), dass sich damit komplexe Zusammenhänge quantitativ analysieren lassen. Auf diese Weise untersuchen wir die Auswirkungen von Freiheitsgraden auf die Konstruktion von Linien und die Wahl von Reisewegen der Passagiere, Abhängigkeiten zwischen Kosten und Reisezeiten sowie den Einfluss verschiedener Preissysteme auf Nachfrage und Kostendeckung. T3 - ZIB-Report - 08-04 KW - Preisplanung KW - Linienplanung KW - Optimierung Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10555 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Grötschel, Martin A1 - Jaeger, Ulrich T1 - Planning Problems in Public Transit N2 - Every day, millions of people are transported by buses, trains, and airplanes in Germany. Public transit (PT) is of major importance for the quality of life of individuals as well as the productivity of entire regions. Quality and efficiency of PT systems depend on the political framework (state-run, market oriented) and the suitability of the infrastructure (railway tracks, airport locations), the existing level of service (timetable, flight schedule), the use of adequate technologies (information, control, and booking systems), and the best possible deployment of equipment and resources (energy, vehicles, crews). The decision, planning, and optimization problems arising in this context are often gigantic and “scream” for mathematical support because of their complexity. This article sketches the state and the relevance of mathematics in planning and operating public transit, describes today’s challenges, and suggests a number of innovative actions. The current contribution of mathematics to public transit is — depending on the transportation mode — of varying depth. Air traffic is already well supported by mathematics. Bus traffic made significant advances in recent years, while rail traffic still bears significant opportunities for improvements. In all areas of public transit, the existing potentials are far from being exhausted. For some PT problems, such as vehicle and crew scheduling in bus and air traffic, excellent mathematical tools are not only available, but used in many places. In other areas, such as rolling stock rostering in rail traffic, the performance of the existing mathematical algorithms is not yet sufficient. Some topics are essentially untouched from a mathematical point of view; e.g., there are (except for air traffic) no network design or fare planning models of practical relevance. PT infrastructure construction is essentially devoid of mathematics, even though enormous capital investments are made in this area. These problems lead to questions that can only be tackled by engineers, economists, politicians, and mathematicians in a joint effort. Among other things, the authors propose to investigate two specific topics, which can be addressed at short notice, are of fundamental importance not only for the area of traffic planning, should lead to a significant improvement in the collaboration of all involved parties, and, if successful, will be of real value for companies and customers: • discrete optimal control: real-time re-planning of traffic systems in case of disruptions, • model integration: service design in bus and rail traffic. Work on these topics in interdisciplinary research projects could be funded by the German ministry of research and education (BMBF), the German ministry of economics (BMWi), or the German science foundation (DFG). T3 - ZIB-Report - 09-13 KW - öffentlicher Verkehr KW - diskrete Optimierung KW - ganzzahlige Programmierung KW - public transit KW - discrete optimization KW - integer programming Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11252 SN - 1438-0064 ER - TY - GEN A1 - Schlechte, Thomas A1 - Borndörfer, Ralf T1 - Balancing Efficiency and Robustness – A Bi-criteria Optimization Approach to Railway Track Allocation N2 - Technical restrictions and challenging details let railway traffic become one of the most complex transportation systems. Routing trains in a conflict-free way through a track network is one of the basic scheduling problems for any railway company. This article focuses on a robust extension of this problem, also known as train timetabling problem (TTP), which consists in finding a schedule, a conflict free set of train routes, of maximum value for a given railway network. However, timetables are not only required to be profitable. Railway companies are also interested in reliable and robust solutions. Intuitively, we expect a more robust track allocation to be one where disruptions arising from delays are less likely to be propagated causing delays of subsequent trains. This trade-off between an efficient use of railway infrastructure and the prospects of recovery leads us to a bi-criteria optimization approach. On the one hand we want to maximize the profit of a schedule, that is more or less to maximize the number of feasible routed trains. On the other hand if two trains are scheduled as tight as possible after each other it is clear that a delay of the first one always affects the subsequent train. We present extensions of the integer programming formulation in [BorndoerferSchlechte2007] for solving (TTP). These models can incorporate both aspects, because of the additional track configuration variables. We discuss how these variables can directly be used to measure a certain type of robustness of a timetable. For these models which can be solved by column generation techniques, we propose so-called scalarization techniques, see [Ehrgott2005], to determine efficient solutions. Here, an efficient solution is one which does not allow any improvement in profit and robustness at the same time. We prove that the LP-relaxation of the (TTP) including an additional $\epsilon$-constraint remains solvable in polynomial time. Finally, we present some preliminary results on macroscopic real-world data of a part of the German long distance railway network. T3 - ZIB-Report - 08-22 KW - Train Timetabling Problem KW - Bicriteria Optimization KW - Column Generation Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10763 SN - 1438-0064 ER - TY - GEN A1 - Torres, Luis Miguel A1 - Torres, Ramiro A1 - Borndörfer, Ralf A1 - Pfetsch, Marc T1 - Line Planning on Paths and Tree Networks with Applications to the Quito Trolebus System N2 - Line planning is an important step in the strategic planning process of a public transportation system. In this paper, we discuss an optimization model for this problem in order to minimize operation costs while guaranteeing a certain level of quality of service, in terms of available transport capacity. We analyze the problem for path and tree network topologies as well as several categories of line operation that are important for the Quito Trolebus system. It turns out that, from a computational complexity worst case point of view, the problem is hard in all but the most simple variants. In practice, however, instances based on real data from the Trolebus System in Quito can be solved quite well, and significant optimization potentials can be demonstrated. T3 - ZIB-Report - 08-35 KW - line planning KW - computational complexity KW - public transport KW - integer programming Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10869 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Liebchen, Christian T1 - When Periodic Timetables are Suboptimal N2 - The timetable is the essence of the service offered by any provider of public transport'' (Jonathan Tyler, CASPT 2006). Indeed, the timetable has a major impact on both operating costs and on passenger comfort. Most European agglomerations and railways use periodic timetables in which operation repeats in regular intervals. In contrast, many North and South American municipalities use trip timetables in which the vehicle trips are scheduled individually subject to frequency constraints. We compare these two strategies with respect to vehicle operation costs. It turns out that for short time horizons, periodic timetabling can be suboptimal; for sufficiently long time horizons, however, periodic timetabling can always be done in an optimal way'. T3 - ZIB-Report - 07-29 KW - Taktfahrplan KW - Fahrplan KW - Nahverkehr KW - periodic timetable KW - trip timetable KW - public transport Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9151 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Schlechte, Thomas T1 - Solving Railway Track Allocation Problems N2 - The \emph{optimal track allocation problem} (\textsc{OPTRA}), also known as the train routing problem or the train timetabling problem, is to find, in a given railway network, a conflict-free set of train routes of maximum value. We propose a novel integer programming formulation for this problem that is based on additional configuration' variables. Its LP-relaxation can be solved in polynomial time. These results are the theoretical basis for a column generation algorithm to solve large-scale track allocation problems. Computational results for the Hanover-Kassel-Fulda area of the German long distance railway network involving up to 570 trains are reported. T3 - ZIB-Report - 07-20 KW - railway track allocation KW - timetabling KW - column generation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9631 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Dovica, Ivan A1 - Nowak, Ivo A1 - Schickinger, Thomas T1 - Robust Tail Assignment N2 - We propose an efficient column generation method to minimize the probability of delay propagations along aircraft rotations. In this way, delay resistant schedules can be constructed. Computational results for large-scale real-world problems demonstrate substantial punctuality improvements. The method can be generalized to crew and integrated scheduling problems. T3 - ZIB-Report - 10-08 KW - Flugzeugumlaufplanung KW - robuste Optimierung KW - Spaltenerzeugung KW - Tail Assignment KW - Robust Optimization KW - Column Generation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11707 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Heismann, Olga T1 - Minimum Cost Hyperassignments with Applications to ICE/IC Rotation Planning N2 - Vehicle rotation planning is a fundamental problem in rail transport. It decides how the railcars, locomotives, and carriages are operated in order to implement the trips of the timetable. One important planning requirement is operational regularity, i.e., using the rolling stock in the same way on every day of operation. We propose to take regularity into account by modeling the vehicle rotation planning problem as a minimum cost hyperassignment problem (HAP). Hyperassignments are generalizations of assignments from directed graphs to directed hypergraphs. Finding a minimum cost hyperassignment is NP-hard. Most instances arising from regular vehicle rotation planning, however, can be solved well in practice. We show that, in particular, clique inequalities strengthen the canonical LP relaxation substantially. T3 - ZIB-Report - 11-46 KW - hyperassignments KW - vehicle rotation planning Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14564 UR - http://link.springer.com/chapter/10.1007%2F978-3-642-29210-1_10 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Langenhan, Andreas A1 - Löbel, Andreas A1 - Schulz, Christof A1 - Weider, Steffen T1 - Duty Scheduling Templates N2 - We propose duty templates as a novel concept to produce similar duty schedules for similar days of operation in public transit. Duty templates can conveniently handle various types of similarity requirements, and they can be implemented with ease using standard algorithmic techniques. They have produced good results in practice. T3 - ZIB-Report - 12-09 KW - duty scheduling KW - duty templates Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14699 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Löbel, Andreas A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - Rapid Branching N2 - We propose rapid branching (RB) as a general branch-and-bound heuristic for solving large scale optimization problems in traffic and transport. The key idea is to combine a special branching rule and a greedy node selection strategy in order to produce solutions of controlled quality rapidly and efficiently. We report on three successful applications of the method for integrated vehicle and crew scheduling, railway track allocation, and railway vehicle rotation planning. T3 - ZIB-Report - 12-10 KW - large scale optimization KW - rapid branching KW - column generation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14728 SN - 1438-0064 ER -