TY - GEN A1 - Brett, Charles A1 - Hoberg, Rebecca A1 - Pacheco, Meritxell A1 - Smith, Kyle A1 - Borndörfer, Ralf A1 - Euler, Ricardo A1 - Gamrath, Gerwin A1 - Grimm, Boris A1 - Heismann, Olga A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Tesch, Alexander T1 - G-RIPS 2014 RailLab - Towards robust rolling stock rotations N2 - The Graduate-Level Research in Industrial Projects (G-RIPS) Program provides an opportunity for high-achieving graduate-level students to work in teams on a real-world research project proposed by a sponsor from industry or the public sector. Each G-RIPS team consists of four international students (two from the US and two from European universities), an academic mentor, and an industrial sponsor. This is the report of the Rail-Lab project on the definition and integration of robustness aspects into optimizing rolling stock schedules. In general, there is a trade-off for complex systems between robustness and efficiency. The ambitious goal was to explore this trade-off by implementing numerical simulations and developing analytic models. In rolling stock planning a very large set of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacity, and regularity aspects, have to be considered in an integrated model. General hypergraphs provide the modeling power to tackle those requirements. Furthermore, integer programming approaches are able to produce high quality solutions for the deterministic problem. When stochastic time delays are considered, the mathematical programming problem is much more complex and presents additional challenges. Thus, we started with a basic variant of the deterministic case, i.e., we are only considering hypergraphs representing vehicle composition and regularity. We transfered solution approaches for robust optimization from the airline industry to the setting of railways and attained a reasonable measure of robustness. Finally, we present and discuss different methods to optimize this robustness measure. T3 - ZIB-Report - 14-34 KW - robust optimization, rolling stock planning Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53475 SN - 1438-0064 N1 - ZIB-Report 14-34 ER - TY - THES A1 - Euler, Ricardo T1 - The Bienstock Zuckerberg Algorithm for the Rolling Stock Rotation Problem N2 - The design of rolling stock rotations is an important task in large-scale railway planning. This so-called rolling stock rotation problem (RSRP) is usually tackled using an integer programming approach. Markus Reuther did so in his dissertation [15] for the ICE railway network of DB ("Deutsche Bahn"). Due to the size of the network and the complexity of further technical requirements, the resulting integer problems tend to become very large and computationally involved. In this thesis, we tackle the linear programming relaxation of the RSRP integer program. We will do so by applying a modified version of an algorithm recently proposed by Dan Bienstock and Mark Zuckerberg [2] for the precedence constrained production scheduling problem that arises in open pit mine scheduling. This problem contains a large number of "easy" constraints and a relatively small number of "hard" constraints. We will see that a similar problem structure can also be found in the RSRP. The Bienstock-Zuckerberg algorithm relies on applying Lagrangian relaxation to the hard constraints as well as on partitioning the variable set. We propose three different partition schemes which try to exploit the specific problem structure of the RSRP. Furthermore, we will discuss the influence of primal degeneracy on the algorithm's performance, as well as possible merits of perturbating the right-hand side of the constraint matrix. We provide computational results to assess the performance of those approaches. Y1 - 2018 ER - TY - GEN A1 - Euler, Ricardo A1 - Borndörfer, Ralf A1 - Strunk, Timo A1 - Takkula, Tuomo T1 - ULD Build-Up Scheduling with Dynamic Batching in an Air Freight Hub N2 - Air freight is usually shipped in standardized unit load devices (ULDs). The planning process for the consolidation of transit cargo from inbound flights or locally emerging shipments into ULDs for outbound flights is called build-up scheduling. More specifically, outbound ULDs must be assigned a time and a workstation subject to both workstation capacity constraints and the availability of shipments which in turn depends on break-down decisions for incoming ULDs. ULDs scheduled for the same outbound flight should be built up in temporal and spatial proximity. This serves both to minimize overhead in transportation times and to allow workers to move freight between ULDs. We propose to address this requirement by processing ULDs for the same outbound flight in batches. For the above build-up scheduling problem, we introduce a multi-commodity network design model. Outbound flights are modeled as commodities; transit cargo is represented by cargo flow volume and unpack and batch decisions are represented as design variables. The model is solved with standard MIP solvers on a set of benchmark data. For instances with a limited number of resource conflicts, near-optimal solutions are found in under two hours for a whole week of operations. T3 - ZIB-Report - 21-31 KW - Logistics KW - Airline Applications Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-83482 SN - 1438-0064 ER - TY - JOUR A1 - Euler, Ricardo A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - Price optimal routing in public transportation JF - EURO Journal on Transportation and Logistics KW - Management Science and Operations Research KW - Transportation KW - Modeling and Simulation Y1 - 2024 U6 - https://doi.org/10.1016/j.ejtl.2024.100128 SN - 2192-4376 VL - 13 SP - 1 EP - 15 PB - Elsevier BV ER -