TY - GEN A1 - Lindner, Niels A1 - Reisch, Julian T1 - Parameterized Complexity of Periodic Timetabling N2 - Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib. T3 - ZIB-Report - 20-15 KW - Parameterized complexity KW - Periodic timetabling KW - Treewidth KW - Branchwidth KW - Carvingwidth KW - Periodic Event Scheduling Problem Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78314 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Timetable Merging for the Periodic Event Scheduling Problem N2 - We propose a new mixed integer programming based heuristic for computing new benchmark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling problems inspired by real-world railway timetabling settings, and attracting several international research teams during the last years. We describe two strategies to merge a set of good periodic timetables. These make use of the instance structure and minimum weight cycle bases, finally leading to restricted mixed integer programming formulations with tighter variable bounds. Implementing this timetable merging approach in a concurrent solver, we improve the objective values of the best known solutions for the smallest and largest PESPlib instances by 1.7 and 4.3 percent, respectively. T3 - ZIB-Report - 21-06 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Railway Timetabling KW - PESPlib KW - Benchmark Solutions KW - Mixed Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81587 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Experiments with Conflict Analysis in Mixed Integer Programming N2 - The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving. T3 - ZIB-Report - 16-63 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61087 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob T1 - Conflict Driven Diving for Mixed Integer Programming N2 - The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short paper, we present a new approach which uses conflict information to improve the primal bound during a MIP solve. To derive new improving primal solutions we use a conflict driven diving heuristic called conflict diving that uses the information obtained by conflict analysis. Conflict diving pursues a twofold strategy. By using conflict information the new diving approach is guided into parts of the search space that are usually not explored by other diving heuristics. At the same time, conflict diving has a fail-fast-strategy to reduce the time spent if it cannot find a new primal solution. As a byproduct, additional valid conflict constraints can be derived, from which a MIP solver can gain benefit to improve the dual bound as well. To show the added-value of conflict diving within a MIP solver, conflict diving has been implemented within the non-commercial MIP solver SCIP. Experiments are carried out on general MIP instances from standard public test sets, like MIPLIB2010 or Cor@l. T3 - ZIB-Report - 17-69 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66116 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Beckenbach, Isabel A1 - Eifler, Leon A1 - Fackeldey, Konstantin A1 - Gleixner, Ambros A1 - Grever, Andreas A1 - Weber, Marcus T1 - Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes N2 - In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst. T3 - ZIB-Report - 16-39 KW - Non-reversible Markov Processes KW - NESS KW - Mixed-Integer Programming KW - Markov State Models Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60353 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Gamrath, Gerald A1 - Hiller, Benjamin T1 - Reoptimization Techniques in MIP Solvers N2 - Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus on the case that subsequent MIPs differ only in the objective function or that the feasible region is reduced. We propose extensions of the very complex branch-and-bound algorithms employed by general MIP solvers based on the idea to ``warmstart'' using the final search frontier of the preceding solver run. We extend the academic MIP solver SCIP by these techniques to obtain a reoptimizing branch-and-bound solver and report computational results which show the effectiveness of the approach. T3 - ZIB-Report - 15-24 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54375 SN - 1438-0064 ER - TY - JOUR A1 - Witzig, Jakob A1 - Beckenbach, Isabel A1 - Eifler, Leon A1 - Fackeldey, Konstantin A1 - Gleixner, Ambros A1 - Grever, Andreas A1 - Weber, Marcus T1 - Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes JF - Multiscale Modeling and Simulation N2 - In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst. KW - Markov State Models KW - NESS KW - Non-reversible Markov Processes KW - Mixed-Integer Programming Y1 - 2018 U6 - https://doi.org/10.1137/16M1091162 SN - 1438-0064 VL - 16 IS - 1 SP - 248 EP - 265 ER - TY - GEN A1 - Hiller, Benjamin A1 - Klug, Torsten A1 - Witzig, Jakob T1 - Reoptimization in branch-and-bound algorithms with an application to elevator control N2 - We consider reoptimization (i.e. the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm. We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm. T3 - ZIB-Report - 13-15 KW - reoptimization KW - branch-and-bound KW - column generation KW - elevator control Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17876 SN - 1438-0064 ER - TY - GEN A1 - Eifler, Leon A1 - Gleixner, Ambros T1 - Safe and Verified Gomory Mixed Integer Cuts in a Rational MIP Framework N2 - This paper is concerned with the exact solution of mixed-integer programs (MIPs) over the rational numbers, i.e., without any roundoff errors and error tolerances. Here, one computational bottleneck that should be avoided whenever possible is to employ large-scale symbolic computations. Instead it is often possible to use safe directed rounding methods, e.g., to generate provably correct dual bounds. In this work, we continue to leverage this paradigm and extend an exact branch-and-bound framework by separation routines for safe cutting planes, based on the approach first introduced by Cook, Dash, Fukasawa, and Goycoolea in 2009. Constraints are aggregated safely using approximate dual multipliers from an LP solve, followed by mixed-integer rounding to generate provably valid, although slightly weaker inequalities. We generalize this approach to problem data that is not representable in floating-point arithmetic, add routines for controlling the encoding length of the resulting cutting planes, and show how these cutting planes can be verified according to the VIPR certificate standard. Furthermore, we analyze the performance impact of these cutting planes in the context of an exact MIP framework, showing that we can solve 21.5% more instances and reduce solving times by 26.8% on the MIPLIB 2017 benchmark test set. T3 - ZIB-Report - 23-09 KW - Mixed integer programming, Exact computation, Rational arithmetic, Cutting Planes, Symbolic Computations, Certificate of correctness Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-90159 SN - 1438-0064 ER - TY - GEN A1 - Eifler, Leon A1 - Gleixner, Ambros A1 - Pulaj, Jonad T1 - A Safe Computational Framework for Integer Programming applied to Chvátal's Conjecture N2 - We describe a general and safe computational framework that provides integer programming results with the degree of certainty that is required for machine-assisted proofs of mathematical theorems. At its core, the framework relies on a rational branch-and-bound certificate produced by an exact integer programming solver, SCIP, in order to circumvent floating-point roundoff errors present in most state-of-the-art solvers for mixed-integer programs. The resulting certificates are self-contained and checker software exists that can verify their correctness independently of the integer programming solver used to produce the certificate. This acts as a safeguard against programming errors that may be present in complex solver software. The viability of this approach is tested by applying it to finite cases of Chvátal's conjecture, a long-standing open question in extremal combinatorics. We take particular care to verify also the correctness of the input for this specific problem, using the Coq formal proof assistant. As a result we are able to provide a first machine-assisted proof that Chvátal's conjecture holds for all downsets whose union of sets contains seven elements or less. T3 - ZIB-Report - 21-35 KW - exact rational mixed integer programming KW - extremal combinatorics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-84444 SN - 1438-0064 ER - TY - GEN A1 - Euler, Ricardo A1 - Borndörfer, Ralf A1 - Strunk, Timo A1 - Takkula, Tuomo T1 - ULD Build-Up Scheduling with Dynamic Batching in an Air Freight Hub N2 - Air freight is usually shipped in standardized unit load devices (ULDs). The planning process for the consolidation of transit cargo from inbound flights or locally emerging shipments into ULDs for outbound flights is called build-up scheduling. More specifically, outbound ULDs must be assigned a time and a workstation subject to both workstation capacity constraints and the availability of shipments which in turn depends on break-down decisions for incoming ULDs. ULDs scheduled for the same outbound flight should be built up in temporal and spatial proximity. This serves both to minimize overhead in transportation times and to allow workers to move freight between ULDs. We propose to address this requirement by processing ULDs for the same outbound flight in batches. For the above build-up scheduling problem, we introduce a multi-commodity network design model. Outbound flights are modeled as commodities; transit cargo is represented by cargo flow volume and unpack and batch decisions are represented as design variables. The model is solved with standard MIP solvers on a set of benchmark data. For instances with a limited number of resource conflicts, near-optimal solutions are found in under two hours for a whole week of operations. T3 - ZIB-Report - 21-31 KW - Logistics KW - Airline Applications Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-83482 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Incremental Heuristics for Periodic Timetabling N2 - We present incremental heuristics for the Periodic Event Scheduling Problem (PESP), the standard mathematical tool to optimize periodic timetables in public transport. The core of our method is to solve successively larger subinstances making use of previously found solutions. Introducing the technical notion of free stratifications, we formulate a general scheme for incremental heuristics for PESP. More practically, we use line and station information to create heuristics that add lines or stations one by one, and we evaluate these heuristics on instances of the benchmarking library PESPlib. This approach is indeed viable, and leads to new incumbent solutions for six PESPlib instances. T3 - ZIB-Report - 23-22 KW - Timetabling KW - Mixed-Integer Programming KW - Public Transport Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-92309 SN - 1438-0064 ER - TY - GEN A1 - Bortoletto, Enrico A1 - Lindner, Niels T1 - Scaling and Rounding Periodic Event Scheduling Instances to Different Period Times N2 - The Periodic Event Scheduling Problem (PESP) is a notoriously hard combinatorial optimization problem, essential for the design of periodic timetables in public transportation. The coefficients of the integer variables in the standard mixed integer linear programming formulations of PESP are the period time, e.g., 60 for a horizon of one hour with a resolution of one minute. In many application scenarios, lines with different frequencies have to be scheduled, leading to period times with many divisors. It then seems natural to consider derived instances, where the period time is a divisor of the original one, thereby smaller, and bounds are scaled and rounded accordingly. To this end, we identify two rounding schemes: wide and tight. We then discuss the approximation performance of both strategies, in theory and practice. T3 - ZIB-Report - 23-23 KW - Timetabling KW - Mixed-Integer Programming KW - Public Transport Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-92315 SN - 1438-0064 ER - TY - GEN A1 - Hendel, Gregor A1 - Miltenberger, Matthias A1 - Witzig, Jakob T1 - Adaptive Algorithmic Behavior for Solving Mixed Integer Programs Using Bandit Algorithms N2 - State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming. We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies. For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance. We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem. In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class. Finally, we discuss the computational benefits of using the proposed adaptive selection within the \scip Optimization Suite on publicly available MIP instances. T3 - ZIB-Report - 18-36 KW - mixed integer programming KW - primal heuristics KW - multi armed bandit Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69563 SN - 1438-0064 ER - TY - GEN A1 - Anderson, Lovis A1 - Turner, Mark A1 - Koch, Thorsten T1 - Generative deep learning for decision making in gas networks N2 - A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. With the trained network we produce a feasible solution in 2.5s, use it as a warm-start solution, and thereby decrease global optimal solution solve time by 60.5%. T3 - ZIB-Report - 20-38 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81103 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Masing, Berenike T1 - On the Split Closure of the Periodic Timetabling Polytope N2 - The Periodic Event Scheduling Problem (PESP) is the central mathematical tool for periodic timetable optimization in public transport. PESP can be formulated in several ways as a mixed-integer linear program with typically general integer variables. We investigate the split closure of these formulations and show that split inequalities are identical with the recently introduced flip inequalities. While split inequalities are a general mixed-integer programming technique, flip inequalities are defined in purely combinatorial terms, namely cycles and arc sets of the digraph underlying the PESP instance. It is known that flip inequalities can be separated in pseudo-polynomial time. We prove that this is best possible unless P $=$ NP, but also observe that the complexity becomes linear-time if the cycle defining the flip inequality is fixed. Moreover, introducing mixed-integer-compatible maps, we compare the split closures of different formulations, and show that reformulation or binarization by subdivision do not lead to stronger split closures. Finally, we estimate computationally how much of the optimality gap of the instances of the benchmark library PESPlib can be closed exclusively by split cuts, and provide better dual bounds for five instances. T3 - ZIB-Report - 23-16 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Split Closure KW - Mixed-Integer Programming Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91156 SN - 1438-0064 ER - TY - THES A1 - Francobaldi, Matteo T1 - Learning to Use Local Cuts N2 - We propose a machine learning approach to address a specific algorithmic question that arises during the solving process of a mixed-integer linear programming problem, namely, whether to use cutting planes only at the root node or also at internal nodes of the branch-and-bound search tree, or equivalently, whether to run a cut-and-branch or rather a branch-and-cut algorithm. Within a supervised regression framework, we develop three machine learning models, Linear Model, Random Forest and Neural Network, for predicting the relative performance between the two methods, local-cut and no-local-cut. Hence, through an extensive computational study conducted with FICO Xpress over a large test bed of problems, we evaluate the produced strategies, and we show that they are able to provide, upon the existing policies, a significant improvement to the performance of the solver. In fact, a variant of the random forest suggested in the present work has already been implemented by the development team of Xpress, and released with version 8.13 of the software. KW - Mathematical Programming KW - Machine Learning KW - Artificial Intelligence Y1 - 2021 ER - TY - GEN A1 - Schiewe, Philine A1 - Goerigk, Marc A1 - Lindner, Niels T1 - Introducing TimPassLib - A library for integrated periodic timetabling and passenger routing N2 - Classic models to derive a timetable for public transport often face a chicken-and-egg situation: A good timetable should offer passengers routes with small travel times, but the route choice of passengers depends on the timetable. While models that fix passenger routes were frequently considered in the literature, integrated models that simultaneously optimize timetables and passenger routes have seen increasing attention lately. This creates a growing need for a set of instances that allows to test and compare new algorithmic developments for the integrated problem. Our paper addresses this requirement by presenting TimPassLib, a new benchmark library of instances for integrated periodic timetabling and passenger routing. T3 - ZIB-Report - 23-06 KW - periodic timetabling KW - optimization in public transport KW - data sets KW - benchmarking Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89741 SN - 1438-0064 ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Ebert, Patricia T1 - Forward and Line-Based Cycle Bases for Periodic Timetabling N2 - The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks, and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances. T3 - ZIB-Report - 23-05 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89731 SN - 1438-0064 ER - TY - THES A1 - Miltenberger, Matthias T1 - Linear Programming in MILP Solving - A Computational Perspective N2 - Mixed-integer linear programming (MILP) plays a crucial role in the field of mathematical optimization and is especially relevant for practical applications due to the broad range of problems that can be modeled in that fashion. The vast majority of MILP solvers employ the LP-based branch-and-cut approach. As the name suggests, the linear programming (LP) subproblems that need to be solved therein influence their behavior and performance significantly. This thesis explores the impact of various LP solvers as well as LP solving techniques on the constraint integer programming framework SCIP Optimization Suite. SCIP allows for comparisons between academic and open-source LP solvers like Clp and SoPlex, as well as commercially developed, high-end codes like CPLEX, Gurobi, and Xpress. We investigate how the overall performance and stability of an MILP solver can be improved by new algorithmic enhancements like LP solution polishing and persistent scaling that we have implemented in the LP solver SoPlex. The former decreases the fractionality of LP solutions by selecting another vertex on the optimal hyperplane of the LP relaxation, exploiting degeneracy. The latter provides better numerical properties for the LP solver throughout the MILP solving process by preserving and extending the initial scaling factors, effectively also improving the overall performance of SCIP. Both enhancement techniques are activated by default in the SCIP Optimization Suite. Additionally, we provide an analysis of numerical conditions in SCIP through the lens of the LP solver by comparing different measures and how these evolve during the different stages of the solving process. A side effect of our work on this topic was the development of TreeD: a new and convenient way of presenting the search tree interactively and animated in the three-dimensional space. This visualization technique facilitates a better understanding of the MILP solving process of SCIP. Furthermore, this thesis presents the various algorithmic techniques like the row representation and iterative refinement that are implemented in SoPlex and that distinguish the solver from other simplex-based codes. Although it is often not as performant as its competitors, SoPlex demonstrates the ongoing research efforts in the field of linear programming with the simplex method. Aside from that, we demonstrate the rapid prototyping of algorithmic ideas and modeling approaches via PySCIPOpt, the Python interface to the SCIP Optimization Suite. This tool allows for convenient access to SCIP's internal data structures from the user-friendly Python programming language to implement custom algorithms and extensions without any prior knowledge of SCIP's programming language C. TreeD is one such example, demonstrating the use of several Python libraries on top of SCIP. PySCIPOpt also provides an intuitive modeling layer to formulate problems directly in the code without having to utilize another modeling language or framework. All contributions presented in this thesis are readily accessible in source code in SCIP Optimization Suite or as separate projects on the public code-sharing platform GitHub. KW - linear programming KW - mixed-integer programming KW - optimization KW - simplex KW - SCIP Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91873 UR - https://www.dr.hut-verlag.de/9783843953238.html SN - 9783843953238 PB - Verlag Dr. Hut GmbH ER -