TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. T3 - ZIB-Report - 11-21 KW - Large Neighborhood Search KW - Primal Heuristic KW - MIP KW - MIQCP KW - Pseudo-Boolean Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12989 ER - TY - GEN A1 - Sagnol, Guillaume T1 - Approximation of a Maximum-Submodular-Coverage problem involving spectral functions, with application to Experimental Design N2 - We study a family of combinatorial optimization problems defined by a parameter $p\in[0,1]$, which involves spectral functions applied to positive semidefinite matrices, and has some application in the theory of optimal experimental design. This family of problems tends to a generalization of the classical maximum coverage problem as $p$ goes to $0$, and to a trivial instance of the knapsack problem as $p$ goes to $1$. In this article, we establish a matrix inequality which shows that the objective function is submodular for all $p\in[0,1]$, from which it follows that the greedy approach, which has often been used for this problem, always gives a design within $1-1/e$ of the optimum. We next study the design found by rounding the solution of the continuous relaxed problem, an approach which has been applied by several authors. We prove an inequality which generalizes a classical result from the theory of optimal designs, and allows us to give a rounding procedure with an approximation factor which tends to $1$ as $p$ goes to $1$. T3 - ZIB-Report - 11-53 KW - Maximum Coverage KW - Optimal Experimental Design KW - Polynomial Time Approximability KW - Kiefer's p-criterion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14956 SN - 1438-0064 VL - 151 IS - 1--2 SP - 258 EP - 276 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Omont, Bertrand A1 - Sagnol, Guillaume A1 - Swarat, Elmar T1 - A Stackelberg game to optimize the distribution of controls in transportation networks N2 - We propose a game theoretic model for the spatial distribution of inspectors on a transportation network. The problem is to spread out the controls so as to enforce the payment of a transit toll. We formulate a linear program to find the control distribution which maximizes the expected toll revenue, and a mixed integer program for the problem of minimizing the number of evaders. Furthermore, we show that the problem of finding an optimal mixed strategy for a coalition of $N$ inspectors can be solved efficiently by a column generation procedure. Finally, we give experimental results from an application to the truck toll on German motorways. T3 - ZIB-Report - 12-15 KW - Stackelberg game KW - Polymatrix game KW - Controls in transportation networks Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14995 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Klug, Torsten A1 - Tuchscherer, Andreas T1 - An Exact Reoptimization Algorithm for the Scheduling of Elevator Groups N2 - The task of an elevator control is to schedule the elevators of a group such that small waiting and travel times for the passengers are obtained. We present an exact reoptimization algorithm for this problem. A reoptimization algorithm computes a new schedule for the elevator group each time a new passenger arrives. Our algorithm uses column generation techniques and is, to the best of our knowledge, the first exact reoptimization algorithms for a group of passenger elevators. To solve the column generation problem, we propose a Branch & Bound method. T3 - ZIB-Report - 12-43 KW - elevator control, online optimization, reoptimization algorithms, column generation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16485 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Vredeveld, Tjark T1 - Stochastic dominance analysis of Online Bin Coloring algorithms N2 - This paper proposes a new method for probabilistic analysis of online algorithms. It is based on the notion of stochastic dominance. We develop the method for the online bin coloring problem introduced by Krumke et al (2008). Using methods for the stochastic comparison of Markov chains we establish the result that the performance of the online algorithm GreedyFit is stochastically better than the performance of the algorithm OneBin for any number of items processed. This result gives a more realistic picture than competitive analysis and explains the behavior observed in simulations. T3 - ZIB-Report - 12-42 KW - online algorithms, stochastic dominance, algorithm analysis, Markov chains Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16502 SN - 1438-0064 ER - TY - GEN A1 - Wessäly, Roland A1 - Werner, Axel A1 - Eckel, Klaus A1 - Seibel, Julia A1 - Orlowski, Sebastian A1 - Louchet, Hadrien A1 - Patzak, Erwin A1 - Bentz, Winfried T1 - Schätze heben bei der Planung von FTTx-Netzen: optimierte Nutzung von existierenden Leerrohren - eine Praxisstudie N2 - Das vom BMBF geförderte Projekt FTTX-PLAN entwickelt mathematische Modelle und Optimierungsverfahren, um automatisiert kostenoptimierte FTTx-Netze berechnen zu können. Wir zeigen anhand einer Praxisstudie in Zusammenarbeit mit der Regensburger R-KOM, wie ein Planer von diesen Verfahren profitieren kann, um die Auswirkungen bestimmter Entscheidungen auf die Netzstruktur und -kosten zu untersuchen. Wir illustrieren dies am Beispiel eines FTTB/FTTH-Vergleichs, der Variation von Kundenanbindungsraten und der gezielten Ausnutzung existierender Leerrohre, um Tiefbau zu vermeiden. T3 - ZIB-Report - 11-47 KW - Praxisstudie KW - Optische Zugangsnetze KW - Optimierung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14861 UR - http://www.vde-verlag.de/buecher/453339/breitbandversorgung-in-deutschland-itg-fb-227.html SN - 1438-0064 ER - TY - GEN A1 - Werner, Axel T1 - Kombinatorische Optimierung und die 40-Punkte-Regel N2 - Wieviele Punkte braucht eine Mannschaft in der Fußball-Bundesliga mindestens, um sicher dem Abstieg zu entgehen? Wir benutzen kombinatorische Optimierung, um diese und ähnliche Fragen zu beantworten. T3 - ZIB-Report - 11-48 KW - Kombinatorische Optimierung KW - Sport KW - Bundesliga Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14871 SN - 1438-0064 ER - TY - GEN A1 - Orlowski, Sebastian A1 - Werner, Axel A1 - Wessäly, Roland T1 - Estimating trenching costs in FTTx network planning N2 - In this paper we assess to which extent trenching costs of an FTTx network are unavoidable, even if technical side constraints are neglected. For that purpose we present an extended Steiner tree model. Using a variety of realistic problem instances we demonstrate that the total trenching cost can only be reduced by about 5 percent in realistic scenarios. This work has been funded by BMBF (German Federal Ministry of Education and Research) within the program "KMU-innovativ". T3 - ZIB-Report - 11-49 KW - Optical access networks KW - Optimization KW - Steiner trees Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14884 SN - 1438-0064 ER - TY - GEN A1 - Sagnol, Guillaume T1 - Network-related problems in Optimal Experimental Design and Second Order Cone Programming N2 - In the past few years several applications of optimal experimental designs have emerged to optimize the measurements in communication networks. The optimal design problems arising from this kind of applications share three interesting properties: (i) measurements are only available at a small number of locations of the network; (ii) each monitor can simultaneously measure several quantities, which can be modeled by ``multiresponse experiments"; (iii) the observation matrices depend on the topology of the network. In this paper, we give an overview of these experimental design problems and recall recent results for the computation of optimal designs by Second Order Cone Programming (SOCP). New results for the network-monitoring of a discrete time process are presented. In particular, we show that the optimal design problem for the monitoring of an AR1 process can be reduced to the standard form and we give experimental results. T3 - ZIB-Report - 11-52 KW - Optimal Experimental Design KW - Second Order Cone Programming KW - Network measurements Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14942 SN - 1438-0064 VL - 51 IS - 51 SP - 161 EP - 171 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Humpola, Jesco T1 - A Unified View on Relaxations for a Nonlinear Network Flow Problem N2 - We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances. T3 - ZIB-Report - 13-31 KW - Nonlinear Network Flow KW - Mixed-Integer Nonlinear Programming KW - Relaxations Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18857 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Fügenschuh, Armin A1 - Klug, Torsten A1 - Schang, Thilo A1 - Schlechte, Thomas A1 - Schülldorf, Hanno T1 - The Freight Train Routing Problem N2 - We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances. T3 - ZIB-Report - 13-36 KW - Mixed-Integer Nonlinear Programming KW - multi-commodity flows KW - freight train routing Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18991 ER - TY - GEN A1 - Gamrath, Gerald T1 - Improving strong branching by propagation N2 - Strong branching is an important component of most variable selection rules in branch-and-bound based mixed-integer linear programming solvers. It predicts the dual bounds of potential child nodes by solving auxiliary LPs and thereby helps to keep the branch-and-bound tree small. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Computational experiments on standard MIP instances indicate that this is beneficial in three aspects: It helps to reduce the average number of LP iterations per strong branching call, the number of branch-and-bound nodes, and the overall solving time. T3 - ZIB-Report - 12-46 KW - mixed-integer programming KW - branch-and-bound KW - branching rule KW - strong branching KW - domain propagation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17701 SN - 1438-0064 ER - TY - GEN A1 - Humpola, Jesco A1 - Fügenschuh, Armin T1 - A New Class of Valid Inequalities for Nonlinear Network Design Problems N2 - We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts. Then a natural question is where to extend the network by adding pipes in the most economic way such that this flow becomes feasible. Answering this question is computationally demanding because of the difficult problem structure. We use mixed-integer nonlinear programming techniques that rely on an outer approximation of the overall problem, and a branching on decision variables. We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution time when added to the formulation. We demonstrate the computational merits of our approach on test instances. T3 - ZIB-Report - 13-06 KW - Network Design KW - Mixed-Integer Nonlinear Programming KW - Cutting Planes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17771 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - A Hypergraph Model for Railway Vehicle Rotation Planning N2 - We propose a model for the integrated optimization of vehicle rotations and vehicle compositions in long distance railway passenger transport. The main contribution of the paper is a hypergraph model that is able to handle the challenging technical requirements as well as very general stipulations with respect to the ``regularity'' of a schedule. The hypergraph model directly generalizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the model is computationally well-behaved in practice. High quality solutions can be produced in reasonable time using high performance Integer Programming techniques, in particular, column generation and rapid branching. We show that, in this way, large-scale real world instances of our cooperation partner DB Fernverkehr can be solved. T3 - ZIB-Report - 11-36 KW - Rolling Stock Planning, Hypergraph Modeling, Integer Programming, Column Generation, Rapid Branching Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0030-drops-32746 SN - 1438-0064 ER - TY - GEN A1 - Heinz, Stefan A1 - Schlechte, Thomas A1 - Stephan, Rüdiger A1 - Winkler, Michael T1 - Solving steel mill slab design problems N2 - The steel mill slab design problem from the CSPLIB is a combinatorial optimization problem motivated by an application of the steel industry. It has been widely studied in the constraint programming community. Several methods were proposed to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called the multiple knapsack problem with color constraints, originated from the same industrial problem, was discussed in the integer programming community. In particular, a simple integer program for this problem has been given by Forrest et al. The aim of this paper is to bring these different studies together. Moreover, we adapt the model of Forrest et al. for the steel mill slab design problem. Using this model and a state-of-the-art integer program solver all instances of the steel mill slab library can be solved efficiently to optimality. We improved, thereby, the solution values of 76 instances compared to previous results. Finally, we consider a recently introduced variant of the steel mill slab design problem, where within all solutions which minimize the leftover one is interested in a solution which requires a minimum number of slabs. For that variant we introduce two approaches and solve all instances of the steel mill slab library with this slightly changed objective function to optimality. T3 - ZIB-Report - 11-38 KW - steel mill slab design problem KW - multiple knapsack problem with color constraints KW - integer programming KW - set partitioning KW - binpacking with side constraints Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14089 SN - 1438-0064 ER - TY - GEN A1 - Büsing, Christina A1 - D'Andreagiovanni, Fabio T1 - A new theoretical framework for Robust Optimization under multi-band uncertainty N2 - We provide an overview of our main results about studying Linear Programming Problems whose coefficient matrix is subject to uncertainty and the uncertainty is modeled through a multi-band set. Such an uncertainty set generalizes the classical one proposed by Bertsimas and Sim and is particularly suitable in the common case of arbitrary non-symmetric distributions of the parameters. Our investigations were inspired by practical needs of our industrial partner in ongoing projects with focus on the design of robust telecommunications networks. T3 - ZIB-Report - 13-61 KW - Robust Optimization, Uncertainty Set, Multiband Robustness, Network Design Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42644 UR - http://www.springer.com/business+%26+management/operations+research/book/978-3-319-00794-6 SN - 1438-0064 ER - TY - GEN A1 - Bley, Andreas A1 - D'Andreagiovanni, Fabio A1 - Karch, Daniel T1 - Scheduling technology migration in WDM Networks N2 - The rapid technological evolution of telecommunication networks demands service providers to regularly update their technology, with the aim of remaining competitive in the marketplace. However, upgrading the technology in a network is not a trivial task. New hardware components need to be installed in the network and during the installation network connectivity may be temporarily compromised. The Wavelength Division Multiplexing (WDM) technology, whose upgrade is considered in here, shares fiber links among several optical connections and tearing down a single link may disrupt several optical connections at once. When the upgrades involve large parts of a network, typically not all links can be upgraded in parallel, which may lead to an unavoidable longer disruption of some connections. A bad scheduling of the overall endeavor, however, can dramatically increase the disconnection time of parts of the networks, causing extended service disruption. In this contribution, we study the problem of finding a schedule of the fiber link upgrades that minimizes the total service disruption time. To the best of our knowledge, this problem has not yet been formalized and investigated. The aim of our work is to close this gap by presenting a mathematical optimization model for the problem and an innovative solution algorithm that tackles the intrinsic difficulties of the problem. Computational experience on realistic instances completes our study. Our original investigations have been driven by real needs of DFN, operator of the German National Research and Education Network and our partner in the BMBF research project ROBUKOM (http://www.robukom.de/). T3 - ZIB-Report - 13-62 KW - Scheduling, Extended Formulations, Network Migration, WDM Networks Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42654 UR - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6507677&isnumber=6507670 SN - 1438-0064 ER - TY - GEN A1 - Zakrzewska, Anna A1 - D'Andreagiovanni, Fabio A1 - Ruepp, Sarah A1 - Berger, Michael S. T1 - Biobjective Optimization of Radio Access Technology Selection and Resource Allocation in Heterogeneous Wireless Networks N2 - We propose a novel optimization model for resource assignment in heterogeneous wireless network. The model adopts two objective functions maximizing the number of served users and the minimum granted utility at once. A distinctive feature of our new model is to consider two consecutive time slots, in order to include handover as an additional decision dimension. Furthermore, the solution algorithm that we propose refines a heuristic solution approach recently proposed in literature, by considering a real joint optimization of the considered resources. The simulation study shows that the new model leads to a significant reduction in handover frequency, when compared to a traditional scheme based on maximum SNR. T3 - ZIB-Report - 13-63 KW - Heterogeneous Wireless Networks, Biobjective Optimization, Mixed Integer Linear Programming, Simulation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42675 UR - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6576416&isnumber=6576384 SN - 1438-0064 ER - TY - GEN A1 - Blanco, Marco A1 - Schlechte, Thomas T1 - Analysis of Micro-Macro Transformations of Railway Networks N2 - A common technique in the solution of large or complex optimization problems is the use of micro-macro transformations. In this paper, we carry out a theoretical analysis of such transformations for the track allocation problem in railway networks. We prove that the cumulative rounding technique of Schlechte et al. satisfies two of three natural optimality criteria and that this performance cannot be improved. We also show that under extreme circumstances, this technique can perform inconvieniently by underestimating the global optimal value. T3 - ZIB-Report - 13-65 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42710 ER - TY - GEN A1 - Fischer, Frank A1 - Schlechte, Thomas T1 - Strong Relaxations for the Train Timetabling Problem using Connected Configurations N2 - The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral. T3 - ZIB-Report - 17-46 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64743 SN - 1438-0064 ER -