TY - GEN A1 - Harks, Tobias A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Competitive Online Multicommodity Routing N2 - We study online multicommodity minimum cost routing problems in networks, where commodities have to be routed sequentially. Arcs are equipped with load dependent price functions defining the routing weights. We discuss an online algorithm that routes each commodity by minimizing a convex cost function that depends on the demands that are previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is $4K/2+K$-competitive, where $K$ is the number of commodities. For the parallel arc case this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably. T3 - ZIB-Report - 06-27 KW - Online Optimization KW - Routing KW - Telecommunications Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9212 ER - TY - GEN A1 - Harks, Tobias A1 - Heinz, Stefan A1 - Pfetsch, Marc T1 - Competitive Online Multicommodity Routing N2 - In this paper we study online multicommodity routing problems in networks, in which commodities have to be routed sequentially. The flow of each commodity can be split on several paths. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes each commodity by minimizing a convex cost function that only depends on the demands previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is 4K2 (1+K)2 -competitive, where K is the number of commodities. For the single-source single-destination case, this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably. T3 - ZIB-Report - 07-16 KW - Online Optimization KW - Routing KW - Telecommunications Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9599 ER - TY - GEN A1 - Harks, Tobias T1 - Nash Equilibria in Online Sequential Routing Games N2 - In this paper, we study the efficiency of Nash equilibria for a sequence of nonatomic routing games. We assume that the games are played consecutively in time in an online fashion: by the time of playing game $i$, future games $i+1,\dots,n$ are not known, and, once players of game $i$ are in equilibrium, their corresponding strategies and costs remain fixed. Given a sequence of games, the cost for the sequence of Nash equilibria is defined as the sum of the cost of each game. We analyze the efficiency of a sequence of Nash equilibria in terms of competitive analysis arising in the online optimization field. Our main result states that the online algorithm $\sl {SeqNash}$ consisting of the sequence of Nash equilibria is $\frac{4n}{2+n}$-competitive for affine linear latency functions. For $n=1$, this result contains the bound on the price of anarchy of $\frac{4}{3}$ for affine linear latency functions of Roughgarden and Tardos [2002] as a special case. Furthermore, we analyze a problem variant with a modified cost function that reflects the total congestion cost, when all games have been played. In this case, we prove an upper bound of $\frac{4n}{2+n}$ on the competitive ratio of $\sl {SeqNash}$. We further prove a lower bound of $\frac{3n-2}{n}$ of $\sl {SeqNash}$ showing that for $n=2$ our upper bound is tight. T3 - ZIB-Report - 06-43 KW - Congestion Game KW - Online Optimization KW - Nash equilibria Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9376 ER - TY - GEN A1 - Wolf, Thomas T1 - A Study of Genetic Algorithms solving a combinatorial Puzzle N2 - The suitability of Genetic Algorithms (GAs) to solve a combinatorial problem with only one solution is investigated. The dependence of the performance is studied for GA-hard and GA-soft fitness functions, both with a range of different parameter values and different encodings. T3 - ZIB-Report - SC-98-01 Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-3445 ER - TY - GEN A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Pfetsch, Marc A1 - Vigerske, Stefan T1 - Large Neighborhood Search beyond MIP N2 - Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics. T3 - ZIB-Report - 11-21 KW - Large Neighborhood Search KW - Primal Heuristic KW - MIP KW - MIQCP KW - Pseudo-Boolean Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12989 ER - TY - GEN A1 - Sagnol, Guillaume T1 - Approximation of a Maximum-Submodular-Coverage problem involving spectral functions, with application to Experimental Design N2 - We study a family of combinatorial optimization problems defined by a parameter $p\in[0,1]$, which involves spectral functions applied to positive semidefinite matrices, and has some application in the theory of optimal experimental design. This family of problems tends to a generalization of the classical maximum coverage problem as $p$ goes to $0$, and to a trivial instance of the knapsack problem as $p$ goes to $1$. In this article, we establish a matrix inequality which shows that the objective function is submodular for all $p\in[0,1]$, from which it follows that the greedy approach, which has often been used for this problem, always gives a design within $1-1/e$ of the optimum. We next study the design found by rounding the solution of the continuous relaxed problem, an approach which has been applied by several authors. We prove an inequality which generalizes a classical result from the theory of optimal designs, and allows us to give a rounding procedure with an approximation factor which tends to $1$ as $p$ goes to $1$. T3 - ZIB-Report - 11-53 KW - Maximum Coverage KW - Optimal Experimental Design KW - Polynomial Time Approximability KW - Kiefer's p-criterion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14956 SN - 1438-0064 VL - 151 IS - 1--2 SP - 258 EP - 276 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Omont, Bertrand A1 - Sagnol, Guillaume A1 - Swarat, Elmar T1 - A Stackelberg game to optimize the distribution of controls in transportation networks N2 - We propose a game theoretic model for the spatial distribution of inspectors on a transportation network. The problem is to spread out the controls so as to enforce the payment of a transit toll. We formulate a linear program to find the control distribution which maximizes the expected toll revenue, and a mixed integer program for the problem of minimizing the number of evaders. Furthermore, we show that the problem of finding an optimal mixed strategy for a coalition of $N$ inspectors can be solved efficiently by a column generation procedure. Finally, we give experimental results from an application to the truck toll on German motorways. T3 - ZIB-Report - 12-15 KW - Stackelberg game KW - Polymatrix game KW - Controls in transportation networks Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14995 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Klug, Torsten A1 - Tuchscherer, Andreas T1 - An Exact Reoptimization Algorithm for the Scheduling of Elevator Groups N2 - The task of an elevator control is to schedule the elevators of a group such that small waiting and travel times for the passengers are obtained. We present an exact reoptimization algorithm for this problem. A reoptimization algorithm computes a new schedule for the elevator group each time a new passenger arrives. Our algorithm uses column generation techniques and is, to the best of our knowledge, the first exact reoptimization algorithms for a group of passenger elevators. To solve the column generation problem, we propose a Branch & Bound method. T3 - ZIB-Report - 12-43 KW - elevator control, online optimization, reoptimization algorithms, column generation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16485 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Vredeveld, Tjark T1 - Stochastic dominance analysis of Online Bin Coloring algorithms N2 - This paper proposes a new method for probabilistic analysis of online algorithms. It is based on the notion of stochastic dominance. We develop the method for the online bin coloring problem introduced by Krumke et al (2008). Using methods for the stochastic comparison of Markov chains we establish the result that the performance of the online algorithm GreedyFit is stochastically better than the performance of the algorithm OneBin for any number of items processed. This result gives a more realistic picture than competitive analysis and explains the behavior observed in simulations. T3 - ZIB-Report - 12-42 KW - online algorithms, stochastic dominance, algorithm analysis, Markov chains Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16502 SN - 1438-0064 ER - TY - GEN A1 - Wessäly, Roland A1 - Werner, Axel A1 - Eckel, Klaus A1 - Seibel, Julia A1 - Orlowski, Sebastian A1 - Louchet, Hadrien A1 - Patzak, Erwin A1 - Bentz, Winfried T1 - Schätze heben bei der Planung von FTTx-Netzen: optimierte Nutzung von existierenden Leerrohren - eine Praxisstudie N2 - Das vom BMBF geförderte Projekt FTTX-PLAN entwickelt mathematische Modelle und Optimierungsverfahren, um automatisiert kostenoptimierte FTTx-Netze berechnen zu können. Wir zeigen anhand einer Praxisstudie in Zusammenarbeit mit der Regensburger R-KOM, wie ein Planer von diesen Verfahren profitieren kann, um die Auswirkungen bestimmter Entscheidungen auf die Netzstruktur und -kosten zu untersuchen. Wir illustrieren dies am Beispiel eines FTTB/FTTH-Vergleichs, der Variation von Kundenanbindungsraten und der gezielten Ausnutzung existierender Leerrohre, um Tiefbau zu vermeiden. T3 - ZIB-Report - 11-47 KW - Praxisstudie KW - Optische Zugangsnetze KW - Optimierung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14861 UR - http://www.vde-verlag.de/buecher/453339/breitbandversorgung-in-deutschland-itg-fb-227.html SN - 1438-0064 ER - TY - GEN A1 - Werner, Axel T1 - Kombinatorische Optimierung und die 40-Punkte-Regel N2 - Wieviele Punkte braucht eine Mannschaft in der Fußball-Bundesliga mindestens, um sicher dem Abstieg zu entgehen? Wir benutzen kombinatorische Optimierung, um diese und ähnliche Fragen zu beantworten. T3 - ZIB-Report - 11-48 KW - Kombinatorische Optimierung KW - Sport KW - Bundesliga Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14871 SN - 1438-0064 ER - TY - GEN A1 - Orlowski, Sebastian A1 - Werner, Axel A1 - Wessäly, Roland T1 - Estimating trenching costs in FTTx network planning N2 - In this paper we assess to which extent trenching costs of an FTTx network are unavoidable, even if technical side constraints are neglected. For that purpose we present an extended Steiner tree model. Using a variety of realistic problem instances we demonstrate that the total trenching cost can only be reduced by about 5 percent in realistic scenarios. This work has been funded by BMBF (German Federal Ministry of Education and Research) within the program "KMU-innovativ". T3 - ZIB-Report - 11-49 KW - Optical access networks KW - Optimization KW - Steiner trees Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14884 SN - 1438-0064 ER - TY - GEN A1 - Sagnol, Guillaume T1 - Network-related problems in Optimal Experimental Design and Second Order Cone Programming N2 - In the past few years several applications of optimal experimental designs have emerged to optimize the measurements in communication networks. The optimal design problems arising from this kind of applications share three interesting properties: (i) measurements are only available at a small number of locations of the network; (ii) each monitor can simultaneously measure several quantities, which can be modeled by ``multiresponse experiments"; (iii) the observation matrices depend on the topology of the network. In this paper, we give an overview of these experimental design problems and recall recent results for the computation of optimal designs by Second Order Cone Programming (SOCP). New results for the network-monitoring of a discrete time process are presented. In particular, we show that the optimal design problem for the monitoring of an AR1 process can be reduced to the standard form and we give experimental results. T3 - ZIB-Report - 11-52 KW - Optimal Experimental Design KW - Second Order Cone Programming KW - Network measurements Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14942 SN - 1438-0064 VL - 51 IS - 51 SP - 161 EP - 171 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Humpola, Jesco T1 - A Unified View on Relaxations for a Nonlinear Network Flow Problem N2 - We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances. T3 - ZIB-Report - 13-31 KW - Nonlinear Network Flow KW - Mixed-Integer Nonlinear Programming KW - Relaxations Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18857 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Fügenschuh, Armin A1 - Klug, Torsten A1 - Schang, Thilo A1 - Schlechte, Thomas A1 - Schülldorf, Hanno T1 - The Freight Train Routing Problem N2 - We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances. T3 - ZIB-Report - 13-36 KW - Mixed-Integer Nonlinear Programming KW - multi-commodity flows KW - freight train routing Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18991 ER - TY - GEN A1 - Gamrath, Gerald T1 - Improving strong branching by propagation N2 - Strong branching is an important component of most variable selection rules in branch-and-bound based mixed-integer linear programming solvers. It predicts the dual bounds of potential child nodes by solving auxiliary LPs and thereby helps to keep the branch-and-bound tree small. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Computational experiments on standard MIP instances indicate that this is beneficial in three aspects: It helps to reduce the average number of LP iterations per strong branching call, the number of branch-and-bound nodes, and the overall solving time. T3 - ZIB-Report - 12-46 KW - mixed-integer programming KW - branch-and-bound KW - branching rule KW - strong branching KW - domain propagation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17701 SN - 1438-0064 ER - TY - GEN A1 - Humpola, Jesco A1 - Fügenschuh, Armin T1 - A New Class of Valid Inequalities for Nonlinear Network Design Problems N2 - We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts. Then a natural question is where to extend the network by adding pipes in the most economic way such that this flow becomes feasible. Answering this question is computationally demanding because of the difficult problem structure. We use mixed-integer nonlinear programming techniques that rely on an outer approximation of the overall problem, and a branching on decision variables. We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution time when added to the formulation. We demonstrate the computational merits of our approach on test instances. T3 - ZIB-Report - 13-06 KW - Network Design KW - Mixed-Integer Nonlinear Programming KW - Cutting Planes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17771 SN - 1438-0064 ER - TY - GEN A1 - Schiela, Anton A1 - Wachsmuth, Daniel T1 - Convergence Analysis of Smoothing Methods for Optimal Control of Stationary Variational Inequalities N2 - In the article an optimal control problem subject to a stationary variational inequality is investigated. The optimal control problem is complemented with pointwise control constraints. The convergence of a smoothing scheme is analyzed. There, the variational inequality is replaced by a semilinear elliptic equation. It is shown that solutions of the regularized optimal control problem converge to solutions of the original one. Passing to the limit in the optimality system of the regularized problem allows to prove C-stationarity of local solutions of the original problem. Moreover, convergence rates with respect to the regularization parameter for the error in the control are obtained. These rates coincide with rates obtained by numerical experiments, which are included in the paper. T3 - ZIB-Report - 11-23 KW - Variational inequalities KW - optimal control KW - control constraints KW - path-following KW - C-stationarity Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13125 ER - TY - THES A1 - Hendel, Gregor T1 - New Rounding and Propagation Heuristics for Mixed Integer Programming N2 - Die vorliegende Arbeit befasst sich mit Primalheuristiken für gemischt-ganzzahlige, lineare Optimierungsprobleme (engl.: mixed integer program MIP). Zahlreiche Optimierungsprobleme aus der Praxis lassen sich als MIP modellieren, Beispiele hierfür sind u. a. Optimierungsprobleme im öffentlichen Nah- und Fernverkehr, bei logistischen Fragestellungen oder im Bereich der Chip-Verifikation. Das Lösen von MIP ist NP-schwer und wird heutzutage meistens mit Hilfe von Branch-and-Bound-basierenden Algorithmen versucht. Das Branch-and-Bound-Ver\-fah\-ren profitiert unter Umständen von bereits frühzeitig zur Verfügung stehenden Lösungen, daher sind wir sehr an heuristischen Verfahren interessiert, die in der Praxis schnell eine gute Lösung für eine große Zahl an MIPs liefern und somit die Lösezeit des Branch-and-Bound-Verfahrens erheblich beschleunigen können. Primalheuristiken sind Suchverfahren zum Auffinden zulässiger Lösungen eines MIP. Verschiedene Typen von Primalheuristiken sollen dabei den jeweiligen Bedarf des Anwenders zu unterschiedlichen Zeiten während der Branch-and-Bound-Suche decken. Während Start- und Rundeheuristiken zu Beginn des Löseprozesses eine große Rolle bei der Suche nach der ersten zulässigen Lösung haben, arbeiten Verbesserungs-heuristiken auf schon bekannten Lösungen, um neue, bessere Lösungen zu produzieren. Diese Arbeit beschäftigt sich mit Primalheuristiken, welche Teil des MIP-Lösers SCIP sind. Im ersten Kapitel werden nach der Erarbeitung grundlegender Definitionen viele der durch Tobias Achterberg und Timo Berthold in SCIP integrierten heuristischen Verfahren vorgestellt und kategorisiert. Auf dieser Grundlage bauen dann die Kapitel 2-4 der Arbeit auf. In diesen werden drei zusätzliche Heuristiken vorgestellt, im Einzelnen sind dies ZI Round, eine Rundeheuristik, welche zuerst von Wallace beschrieben wurde, außerdem eine 2-Opt-Heuristik für MIP und eine neue Startheuristik, Shift-And-Propagate. Großer Wert wird in jedem Kapitel auf die algorithmische Beschreibung der Heuristiken gelegt, die stets anhand von motivierenden Beispielen eingeführt und anhand von Pseudocode-Algorithmen begleitet werden. Zusätzlich enthält jedes Kapitel Auswertungen der mit den neuen Heuristiken gemessenen Ergebnisse von SCIP. Eine kurze Zusammenfassung in Kapitel 5 schließt diese Arbeit ab. N2 - Many practically relevant problems can be formulated in terms of a mixed integer programming (MIP) model. MIP denotes the optimization of a linear objective function under a certain number of linear side constraints including the need for some of the involved variables to take integral solution values. Applications of MIP based optimization can be found in the area of public transit, scheduling, automatic vehicle routing, network design, etc. From a complexity point of view, MIP solving is known to be NP-hard and most commonly tried to be solved via Branch-and-Bound based algorithms. Branch-and-Bound algorithms benefit from early and good feasible solutions of a MIP in various ways. Primal heuristics are aimed at finding new solutions during the MIP solving process. There are different types of primal heuristics: while start heuristics are particularly valuable to find an early solution, improvement heuristics hopefully drive a given solution further towards optimality. This thesis focusses on primal heuristics which are part of the MIP-solving framework SCIP. The first chapter comes with basic definitions and a brief description of SCIP and the test set which we used. The remainder of the first chapter is an overview of the existing heuristics in SCIP which have been implemented by Achterberg and Berthold. In the following chapters we introduce three new heuristics which apply rounding or propagation techniques for their specific purpose, namely the new rounding heuristic ZI Round, taken from Wallace, a 2-Opt improvement heuristic for MIP and the propagation heuristic Shift-and-Propagate. It is characteristic of all three heuristics that they mainly apply computationally inexpensive algorithms. Each of them is presented in an own chapter, starting with an algorithmic description, followed by implementational details. All chapters close with a discussion of the computational results obtained with the respective implementations in SCIP. KW - Primal Heuristics, MIP, mixed integer programming, ZI Round, Shift-and-Propagate, optimization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-13322 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Weider, Steffen T1 - A Hypergraph Model for Railway Vehicle Rotation Planning N2 - We propose a model for the integrated optimization of vehicle rotations and vehicle compositions in long distance railway passenger transport. The main contribution of the paper is a hypergraph model that is able to handle the challenging technical requirements as well as very general stipulations with respect to the ``regularity'' of a schedule. The hypergraph model directly generalizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the model is computationally well-behaved in practice. High quality solutions can be produced in reasonable time using high performance Integer Programming techniques, in particular, column generation and rapid branching. We show that, in this way, large-scale real world instances of our cooperation partner DB Fernverkehr can be solved. T3 - ZIB-Report - 11-36 KW - Rolling Stock Planning, Hypergraph Modeling, Integer Programming, Column Generation, Rapid Branching Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0030-drops-32746 SN - 1438-0064 ER -