TY - GEN A1 - Shinano, Yuji A1 - Heinz, Stefan A1 - Vigerske, Stefan A1 - Winkler, Michael T1 - FiberSCIP - A shared memory parallelization of SCIP N2 - Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated. T3 - ZIB-Report - 13-55 KW - parallel KW - branch-and-bound KW - deterministic parallelism KW - constraint integer programming KW - mixed integer programming KW - mixed integer nonlinear programming KW - SCIP KW - MIP KW - MINLP Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42595 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation N2 - Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation. T3 - ZIB-Report - 17-03 KW - operations research in energy KW - gas network optimization KW - entry-exit model KW - freely allocable capacity KW - large-scale mixed-integer nonlinear programming Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61931 SN - 1438-0064 N1 - A revised and extended version is available as ZIB-Report 18-11. ER - TY - GEN A1 - Martin, Alexander A1 - Geißler, Björn A1 - Hayn, Christine A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Optimierung Technischer Kapazitäten in Gasnetzen N2 - Die mittel- und längerfristige Planung für den Gastransport hat sich durch Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazität und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze skizziert. T3 - ZIB-Report - 11-56 KW - Gasnetzplanung KW - Technische Kapazitäten KW - Nominierungsvalidierung KW - Buchungsvalidierung KW - Topologieplanung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15121 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Vredeveld, Tjark T1 - Probabilistic alternatives for competitive analysis N2 - In the last 20 years competitive analysis has become the main tool for analyzing the quality of online algorithms. Despite of this, competitive analysis has also been criticized: It sometimes cannot discriminate between algorithms that exhibit significantly different empirical behavior, or it even favors an algorithm that is worse from an empirical point of view. Therefore, there have been several approaches to circumvent these drawbacks. In this survey, we discuss probabilistic alternatives for competitive analysis. T3 - ZIB-Report - 11-55 KW - online algorithms KW - probabilistic analysis KW - competitive analysis KW - survey Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15131 SN - 1438-0064 ER - TY - GEN A1 - Tesch, Alexander T1 - A Polyhedral Study of Event-Based Models for the Resource-Constrained Project Scheduling Problem N2 - We consider event-based Mixed-Integer Programming (MIP) models for the Resource-Constrained Project Scheduling Problem (RCPSP) that represent an alternative to the common time-indexed model (DDT) of Pritsker et al. (1969) for the case where the underlying time horizon is large or job processing times are subject to huge variations. In contrast to the time-indexed model, the size of event-based models does not depend on the time horizon. For two event-based formulations OOE and SEE of Koné et al. (2011) we present new valid inequalities that dominate the original formulation. Additionally, we introduce a new event-based model: the Interval Event-Based Model (IEE). We deduce linear transformations between all three models that yield the strict domination order IEE > SEE > OOE for their linear programming (LP) relaxations, meaning that IEE has the strongest linear relaxation among the event-based models. We further show that the popular DDT formulation can be retrieved from IEE by certain polyhedral operations, thus giving a unifying view on a complete branch of MIP formulations for the RCPSP. In addition, we analyze the computational performance of all presented models on test instances of the PSPLIB (Kolisch and Sprecher 1997). T3 - ZIB-Report - 17-79 KW - Scheduling KW - Mixed-Integer Programming Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68485 SN - 1438-0064waoa ER - TY - GEN A1 - Tesch, Alexander T1 - Improving Energetic Propagations for Cumulative Scheduling N2 - We consider the Cumulative Scheduling Problem (CuSP) in which a set of $n$ jobs must be scheduled according to release dates, due dates and cumulative resource constraints. In constraint programming, the CuSP is modeled as the cumulative constraint. Among the most common propagation algorithms for the CuSP there is energetic reasoning (Baptiste et al., 1999) with a complexity of O(n^3) and edge-finding (Vilim, 2009) with O(kn log n) where k <= n is the number of different resource demands. We consider the complete versions of the propagators that perform all deductions in one call of the algorithm. In this paper, we introduce the energetic edge-finding rule that is a generalization of both energetic reasoning and edge-finding. Our main result is a complete energetic edge-finding algorithm with a complexity of O(n^2 log n) which improves upon the complexity of energetic reasoning. Moreover, we show that a relaxation of energetic edge-finding with a complexity of O(n^2) subsumes edge-finding while performing stronger propagations from energetic reasoning. A further result shows that energetic edge-finding reaches its fixpoint in strongly polynomial time. Our main insight is that energetic schedules can be interpreted as a single machine scheduling problem from which we deduce a monotonicity property that is exploited in the algorithms. Hence, our algorithms improve upon the strength and the complexity of energetic reasoning and edge-finding whose complexity status seemed widely untouchable for the last decades. T3 - ZIB-Report - 18-29 KW - Cumulative Scheduling KW - Constraint Programming KW - Propagation Algorithm Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69331 SN - 1438-0064 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Hayn, Christine A1 - Michaels, Dennis T1 - Mixed-Integer Linear Methods for Layout-Optimization of Screening Systems in Recovered Paper Production N2 - The industrial treatment of waste paper in order to regain valuable fibers from which recovered paper can be produced, involves several steps of preparation. One important step is the separation of stickies that are normally attached to the paper. If not properly separated, remaining stickies reduce the quality of the recovered paper or even disrupt the production process. For the mechanical separation process of fibers from stickies a separator screen is used. This machine has one input feed and two output streams, called the accept and the reject. In the accept the fibers are concentrated, whereas the reject has a higher concentration of stickies. The machine can be controlled by setting its reject rate. But even when the reject rate is set properly, after just a single screening step, the accept still has too many stickies, or the reject too many fibers. To get a proper separation, several separators have to be assembled into a network. From a mathematical point of view this problem can be seen as a multi-commodity network flow design problem with a nonlinear, controllable distribution function at each node. We present a nonlinear mixed-integer programming model for the simultaneous selection of a subset of separators, the network's topology, and the optimal setting of each separator. Numerical results are obtained via different types of linearization of the nonlinearities and the use of mixed-integer linear solvers, and compared with state-of-the-art global optimization software. T3 - ZIB-Report - 12-44 KW - Mixed-Integer Linear Programming KW - Nonlinear Programming KW - Piecewise Linear Approximation KW - Topology Optimization KW - Network Design Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16862 SN - 1438-0064 ER - TY - GEN A1 - Sagnol, Guillaume T1 - On the semidefinite representations of real functions applied to symmetric matrices N2 - We present a new semidefinite representation for the trace of a real function f applied to symmetric matrices, when a semidefinite representation of the convex function f is known. Our construction is intuitive, and yields a representation that is more compact than the previously known one. We also show with the help of matrix geometric means and the Riemannian metric of the set of positive definite matrices that for a rational number p in the interval (0,1], the matrix X raised to the exponent p is the largest element of a set represented by linear matrix inequalities. We give numerical results for a problem inspired from the theory of experimental designs, which show that the new semidefinite programming formulation yields a speed-up factor in the order of 10. T3 - ZIB-Report - 12-50 KW - semidefinite representability KW - optimal experimental designs KW - SDP KW - matrix geometric mean Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17511 SN - 1438-0064 VL - 439 SP - 2829 EP - 2843 ER - TY - GEN A1 - Sagnol, Guillaume T1 - A Class of Semidefinite Programs with rank-one solutions N2 - We show that a class of semidefinite programs (SDP) admits a solution that is a positive semidefinite matrix of rank at most $r$, where $r$ is the rank of the matrix involved in the objective function of the SDP. The optimization problems of this class are semidefinite packing problems, which are the SDP analogs to vector packing problems. Of particular interest is the case in which our result guarantees the existence of a solution of rank one: we show that the computation of this solution actually reduces to a Second Order Cone Program (SOCP). We point out an application in statistics, in the optimal design of experiments. T3 - ZIB-Report - 11-51 KW - SDP KW - Semidefinite Packing Problem KW - rank 1-solution KW - Low-rank solutions KW - SOCP KW - Optimal Experimental Design KW - Multiresponse experiments Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14933 SN - 1438-0064 ER - TY - GEN A1 - Schlechte, Thomas T1 - Railway Track Allocation N2 - This article gives an overview of the results of the author's PhD thesis. The thesis deals with the mathematical optimization for the efficient use of railway infrastructure. We address the optimal allocation of the available railway track capacity - the track allocation problem. This track allocation problem is a major challenge for a railway company, independent of whether a free market, a private monopoly, or a public monopoly is given. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense sizes of the problem instances. Mathematical models and optimization techniques can result in huge gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. We tackle this challenge by developing novel mathematical models and associated innovative algorithmic solution methods for large scale instances. We made considerable progress on solving track allocation problems by two main features - a novel modeling approach for the macroscopic track allocation problem and algorithmic improvements based on the utilization of the bundle method. This allows us to produce for the first time reliable solutions for a real world instance, i.e., the Simplon corridor in Switzerland. T3 - ZIB-Report - 12-38 KW - large-scale integer programming KW - network aggregation KW - configuration models KW - rapid branching Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16402 SN - 1438-0064 ER -