TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Determining all integer vertices of the PESP polytope by flipping arcs N2 - We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. These produce better dual bounds for the smallest and largest instance of the benchmarking library PESPlib. T3 - ZIB-Report - 20-19 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Mixed Integer Programming Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78793 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - New Perspectives on PESP: T-Partitions and Separators N2 - In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables. We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either. The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible. We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time. T3 - ZIB-Report - 19-35 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Graph Partitioning KW - Graph Separators KW - Balanced Cuts Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73853 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Denißen, Jonas A1 - Heller, Simon A1 - Klug, Torsten A1 - Küpper, Michael A1 - Lindner, Niels A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Söhlke, Andreas A1 - Steadman, William T1 - Microscopic Timetable Optimization for a Moving Block System N2 - We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality. T3 - ZIB-Report - 21-13 KW - Moving Block KW - Railway Track Allocation KW - Railway Timetabling KW - Train Routing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82547 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian A1 - Masing, Berenike T1 - Forward Cycle Bases and Periodic Timetabling N2 - Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance \texttt{R1L1} of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds. T3 - ZIB-Report - 21-18 KW - Periodic Timetabling KW - Cycle Bases KW - Mixed Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82756 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Maristany de las Casas, Pedro A1 - Schiewe, Philine T1 - Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data N2 - We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport. T3 - ZIB-Report - 21-17 KW - Preprocessing Shortest Path Problems KW - Interval Data KW - Graph Algorithms Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82716 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Liebchen, Christian A1 - Lindner, Niels T1 - A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable N2 - We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same. T3 - ZIB-Report - 18-38 KW - Vehicle scheduling KW - Periodic timetabling KW - Bipartite matching Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69688 SN - 1438-0064 ER - TY - GEN A1 - Löbel, Fabian A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing N2 - The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances. T3 - ZIB-Report - 19-36 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Integrated Passenger Routing KW - Shortest Routes in Public Transport Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73868 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - van Lieshout, Rolf T1 - Benders Decomposition for the Periodic Event Scheduling Problem N2 - The Periodic Event Scheduling Problem (PESP) is the central mathematical model behind the optimization of periodic timetables in public transport. We apply Benders decomposition to the incidence-based MIP formulation of PESP. The resulting formulation exhibits particularly nice features: The subproblem is a minimum cost network flow problem, and feasibility cuts are equivalent to the well-known cycle inequalities by Odijk. We integrate the Benders approach into a branch-and-cut framework, and assess the performance of this method on instances derived from the benchmarking library PESPlib. T3 - ZIB-Report - 21-29 KW - Periodic Timetabling KW - Periodic Event Scheduling Problem KW - Benders Decomposition KW - Mixed-Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-83338 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Reisch, Julian T1 - Parameterized Complexity of Periodic Timetabling N2 - Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib. T3 - ZIB-Report - 20-15 KW - Parameterized complexity KW - Periodic timetabling KW - Treewidth KW - Branchwidth KW - Carvingwidth KW - Periodic Event Scheduling Problem Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78314 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Timetable Merging for the Periodic Event Scheduling Problem N2 - We propose a new mixed integer programming based heuristic for computing new benchmark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling problems inspired by real-world railway timetabling settings, and attracting several international research teams during the last years. We describe two strategies to merge a set of good periodic timetables. These make use of the instance structure and minimum weight cycle bases, finally leading to restricted mixed integer programming formulations with tighter variable bounds. Implementing this timetable merging approach in a concurrent solver, we improve the objective values of the best known solutions for the smallest and largest PESPlib instances by 1.7 and 4.3 percent, respectively. T3 - ZIB-Report - 21-06 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Railway Timetabling KW - PESPlib KW - Benchmark Solutions KW - Mixed Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81587 SN - 1438-0064 ER -