TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems N2 - This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches. T3 - ZIB-Report - 17-57 KW - Steiner tree KW - maximum-weight connected subgraph Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65439 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - SCIP-Jack—a solver for STP and variants with parallelization extensions: An update N2 - The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. Although the different Steiner tree problem variants are usually strongly related, solution approaches employed so far have been prevalently problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-purpose framework that can be used to solve the classical Steiner tree problem and 11 of its variants. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack includes various newly developed algorithmic components such as preprocessing routines and heuristics. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. After the introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall performance of the solver has considerably improved. This article provides an overview on the current state. T3 - ZIB-Report - 18-05 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66416 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Reduction-based exact solution of prize-collecting Steiner tree problems T3 - ZIB-Report - 18-55 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70958 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schwarz, Robert A1 - Schweiger, Jonas T1 - A System to Evaluate Gas Network Capacities: Concepts and Implementation N2 - Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation. T3 - ZIB-Report - 17-03 KW - operations research in energy KW - gas network optimization KW - entry-exit model KW - freely allocable capacity KW - large-scale mixed-integer nonlinear programming Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61931 SN - 1438-0064 N1 - A revised and extended version is available as ZIB-Report 18-11. ER - TY - GEN A1 - Martin, Alexander A1 - Geißler, Björn A1 - Hayn, Christine A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Optimierung Technischer Kapazitäten in Gasnetzen N2 - Die mittel- und längerfristige Planung für den Gastransport hat sich durch Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazität und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze skizziert. T3 - ZIB-Report - 11-56 KW - Gasnetzplanung KW - Technische Kapazitäten KW - Nominierungsvalidierung KW - Buchungsvalidierung KW - Topologieplanung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-15121 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Hendel, Gregor A1 - Koch, Thorsten T1 - The Three Phases of MIP Solving N2 - Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points. T3 - ZIB-Report - 16-78 KW - optimization software KW - mixed-integer programming KW - branch-and-bound KW - adaptive search behavior KW - optimality prediction Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61607 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Koch, Thorsten A1 - Winkler, Michael T1 - Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores N2 - This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances. T3 - ZIB-Report - 15-53 KW - Mixed Integer Programming KW - Parallel processing KW - Node merging KW - Racing ParaSCIP KW - Ubiquity Generator Framework KW - MIPLIB Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-56404 SN - 1438-0064 ER - TY - GEN A1 - Shinano, Yuji A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores N2 - SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB. T3 - ZIB-Report - 18-58 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71118 SN - 1438-0064 ER - TY - GEN A1 - Breuer, Thomas A1 - Bussieck, Michael A1 - Cao, Karl-Kien A1 - Cebulla, Felix A1 - Fiand, Frederik A1 - Gils, Hans Christian A1 - Gleixner, Ambros A1 - Khabi, Dmitry A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Wetzel, Manuel T1 - Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods N2 - Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described. T3 - ZIB-Report - 17-75 KW - energy system models KW - interior-point methods KW - high-performance computing Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66183 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Rehfeldt, Daniel A1 - Shinano, Yuji T1 - SCIP-Jack – A solver for STP and variants with parallelization extensions N2 - The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. T3 - ZIB-Report - 16-41 KW - Steiner tree problem KW - SCIP-Jack KW - Steiner tree variants KW - maximum-weight connected subgraph KW - prize-collecting Steiner tree Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60170 SN - 1438-0064 ER -