TY - THES A1 - Krumke, Sven T1 - Online Optimization: Competitive Analysis and Beyond N2 - Traditional optimization techniques assume, in general, knowledge of all data of a problem instance. There are many cases in practice, however, where decisions have to be made before complete information about the data is available. In fact, it may be necessary to produce a part of the problem solution as soon as a new piece of information becomes known. This is called an \emph{online situation}, and an algorithm is termed \emph{online}, if it makes a decision (computes a partial solution) whenever a new piece of data requests an action. \emph{Competitive analysis} has become a standard yardstick to measure the quality of online algorithms. One compares the solution produced by an online algorithm to that of an optimal (clairvoyant) offline algorithm. An online algorithm is called $c$-competitive if on every input the solution it produces has cost'' at most $c$~times that of the optimal offline algorithm. This situation can be imagined as a game between an online player and a malicious adversary. Although competitive analysis is a worst-case analysis and henceforth pessimistic, it often allows important insights into the problem structure. One can obtain an idea about what kind of strategies are promising for real-world systems and why. On the other hand there are also cases where the offline adversary is simply too powerful and allows only trivial competitiveness results. This phenomenon is called hitting the triviality barrier''. We investigate several online problems by means of competitive analysis. We also introduce new concepts to overcome the weaknesses of the standard approach and to go beyond the triviality barrier. T3 - ZIB-Report - 02-25 KW - competitive analysis KW - online optimization KW - online algorithm KW - approximation algorithm Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-6925 ER - TY - GEN A1 - Bley, Andreas T1 - On the Hardness of Finding Small Shortest Path Routing Conflicts N2 - Nowadays most data networks use shortest path protocols such as OSPF or IS-IS to route traffic. Given administrative routing lengths for the links of a network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. One of the most fundamental problems in planning shortest path networks is to decide whether a given set of routing paths forms a valid routing and, if this is not the case, to find a small subset of the given paths that cannot be shortest paths simultaneously for any routing lengths. In this paper we show that it is NP-hard to approximate the size of the smallest shortest path conflict by a factor less than 7/6. T3 - ZIB-Report - 09-15 KW - shortest path routing KW - computational complexity Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11276 SN - 1438-0064 ER - TY - GEN A1 - Orlowski, Sebastian A1 - Pióro, Michal T1 - On the complexity of column generation in survivable network design with path-based survivability mechanisms N2 - This survey concerns optimization problems arising in the design of survivable communication networks. It turns out that such problems can be modeled in a natural way as non-compact linear programming formulations based on multicommodity flow network models. These non-compact formulations involve an exponential number of path flow variables, and therefore require column generation to be solved to optimality. We consider several path-based survivability mechanisms and present results, both known and new, on the complexity of the corresponding column generation problems (called the pricing problems). We discuss results for the case of the single link (or node) failures scenarios, and extend the considerations to multiple link failures. Further, we classify the design problems corresponding to different survivability mechanisms according to the structure of their pricing problem. Finally, we show that almost all encountered pricing problems are hard to solve for scenarios admitting multiple failures. T3 - ZIB-Report - 08-51 KW - Netzplanung KW - Dimensionierung KW - Spaltengenerierung KW - Mehrfachausfälle KW - survivable network design KW - routing KW - column generation KW - pricing KW - complexity Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11058 SN - 1438-0064 ER - TY - THES A1 - Hiller, Benjamin T1 - Bad Guys are Rare: Probabilistic Analysis of an Elementary Dial-a-Ride Problem N2 - This thesis deals with a Dial-a-Ride problem on trees and considers both offline and online versions of this problem. We study the behavior of certain algorithms on random instances, i.e. we do probabilistic analysis. The focus is on results describing the typical behavior of the algorithms, i.e. results holding with (asymptotically) high probability. For the offline version, we present a simplified proof of a result of Coja-Oghlan, Krumke und Nierhoff. The results states that some heuristic using a minimum spanning tree to approximate a Steiner tree gives optimal results with high probability. This explains why this heuristic produces optimal solutions quite often. In the second part, probabilistic online versions of the problem are introduced. We study the online strategies REPLAN and IGNORE. Regarding the IGNORE strategy we can show that it works almost optimal under high load with high probability. KW - Dial-a-Ride problem on trees KW - probabilistic analysis KW - online algorithms Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-10114 ER -