TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Ebert, Patricia T1 - Forward and Line-Based Cycle Bases for Periodic Timetabling N2 - The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks, and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances. T3 - ZIB-Report - 23-05 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89731 SN - 1438-0064 ER - TY - THES A1 - Witzig, Jakob T1 - Reoptimization Techniques in MIP Solvers N2 - Many optimization problems can be modeled as Mixed Integer Programs (MIPs). In general, MIPs cannot be solved efficiently, since solving MIPs is NP-hard, see, e.g., Schrijver, 2003. Common methods for solving NP-hard problems are branch-and-bound and column generation. In the case of column generation, the original problem becomes decomposed or re-formulated into one ore more smaller subproblems, which are easier to solve. Each of these subproblems is solved separately and recurrently, which can be interpreted as solving a sequence of optimization problems. In this thesis, we consider a sequence of MIPs which only differ in the respective objective functions. Furthermore, we assume each of these MIPs get solved with a branch-and-bound algorithm. This thesis aims to figure out whether the solving process of a given sequence of MIPs can be accelerated by reoptimization. As reoptimization we understand starting the solving process of a MIP of this sequence at a given frontier of a search tree corresponding to another MIP of this sequence. At the beginning we introduce an LP-based branch-and-bound algorithm. This algorithm is inspired by the reoptimizing algorithm of Hiller, Klug, and the author of this thesis, 2013. Since most of the state-of-the-art MIP solvers come to decisions based on dual information, which leads to the loss of feasible solutions after changing the objective function, we present a technique to guarantee optimality despite using these information. A decision is based on a dual information if this decision is valid for at least one feasible solution, whereas a decision is based on a primal information if this decision is valid for all feasible solutions. Afterwards, we consider representing the search frontier of the tree by a set of nodes of a given size. We call this the Tree Compression Problem. Moreover, we present a criterion characterizing the similarity of two objective functions. To evaluate our approach of reoptimization we extend the well-known and well-maintained MIP solver SCIP to an LP-based branch-and-bound framework, introduce two heuristics for solving the Tree Compression Problem, and a primal heuristic which is especially fitted to column generation. Finally, we present computational experiments on several problem classes, e.g., the Vertex Coloring and k-Constrained Shortest Path. Our experiments show, that a straightforward reoptimization, i.e., without additional heuristics, provides no benefit in general. However, in combination with the techniques and methods presented in this thesis, we can accelerate the solving of a given sequence up to the factor 14. For this purpose it is essential to take the differences of the objective functions into account and to restart the reoptimization, i.e., solve the subproblem from scratch, if the objective functions are not similar enough. Finally, we discuss the possibility to parallelize the solving process of the search frontier at the beginning of each solving process. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-54067 ER - TY - GEN A1 - Shinano, Yuji T1 - The Ubiquity Generator Framework: 7 Years of Progress in Parallelizing Branch-and-Bound N2 - Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG. T3 - ZIB-Report - 17-60 KW - Parallelization, Branch-and-bound, Mixed Integer Programming, UG, ParaSCIP, FiberSCIP, ParaXpress, FiberXpress, SCIP-Jack Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65545 SN - 1438-0064 ER - TY - GEN A1 - Orlowski, Sebastian A1 - Werner, Axel A1 - Wessäly, Roland T1 - Estimating trenching costs in FTTx network planning N2 - In this paper we assess to which extent trenching costs of an FTTx network are unavoidable, even if technical side constraints are neglected. For that purpose we present an extended Steiner tree model. Using a variety of realistic problem instances we demonstrate that the total trenching cost can only be reduced by about 5 percent in realistic scenarios. This work has been funded by BMBF (German Federal Ministry of Education and Research) within the program "KMU-innovativ". T3 - ZIB-Report - 11-49 KW - Optical access networks KW - Optimization KW - Steiner trees Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14884 SN - 1438-0064 ER - TY - GEN A1 - Hiller, Benjamin A1 - Vredeveld, Tjark T1 - Stochastic dominance analysis of Online Bin Coloring algorithms N2 - This paper proposes a new method for probabilistic analysis of online algorithms. It is based on the notion of stochastic dominance. We develop the method for the online bin coloring problem introduced by Krumke et al (2008). Using methods for the stochastic comparison of Markov chains we establish the result that the performance of the online algorithm GreedyFit is stochastically better than the performance of the algorithm OneBin for any number of items processed. This result gives a more realistic picture than competitive analysis and explains the behavior observed in simulations. T3 - ZIB-Report - 12-42 KW - online algorithms, stochastic dominance, algorithm analysis, Markov chains Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-16502 SN - 1438-0064 ER - TY - GEN A1 - Pfeuffer, Frank A1 - Werner, Axel T1 - Adaptive telecommunication network operation with a limited number of reconfigurations N2 - Rising traffic in telecommunication networks lead to rising energy costs for the network operators. Meanwhile, increased flexibility of the networking hardware may help to realize load-adaptive operation of the networks to cut operation costs. To meet network operators’ concerns over stability, we propose to switch network configurations only a limited number of times per day. We present a method for the integrated computation of optimal switching times and network configurations that alternatingly solves mixed-integer programs and constrained shortest cycle problems in a certain graph. Similarly to the Branch & Bound Algorithm, it uses lower and upper bounds on the optimum value and allows for pivoting strategies to guide the computation and avoid the solution of irrelevant subproblems. The algorithm can act as a framework to be adapted and applied to suitable problems of different origin. T3 - ZIB-Report - 15-36 KW - Telecommunication KW - Network Design KW - Dynamic Traffic KW - Branch and Bound Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-55547 SN - 1438-0064 ER - TY - GEN A1 - Griewank, Andreas A1 - Streubel, Tom A1 - Lehmann, Lutz A1 - Hasenfelder, Richard A1 - Radons, Manuel T1 - Piecewise linear secant approximation via Algorithmic Piecewise Differentiation N2 - It is shown how piecewise differentiable functions \(F: R^n → R^m\) that are defined by evaluation programs can be approximated locally by a piecewise linear model based on a pair of sample points x̌ and x̂. We show that the discrepancy between function and model at any point x is of the bilinear order O(||x − x̌|| ||x − x̂||). This is a little surprising since x ∈ R^n may vary over the whole Euclidean space, and we utilize only two function samples F̌ = F(x̌) and F̂ = F(x̂), as well as the intermediates computed during their evaluation. As an application of the piecewise linearization procedure we devise a generalized Newton’s method based on successive piecewise linearization and prove for it sufficient conditions for convergence and convergence rates equaling those of semismooth Newton. We conclude with the derivation of formulas for the numerically stable implementation of the aforedeveloped piecewise linearization methods. T3 - ZIB-Report - 16-54 KW - Automatic differentiation KW - Computational graph KW - Lipschitz continuity KW - Generalized Hermite interpolation KW - ADOL-C Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61642 SN - 1438-0064 ER -