TY - GEN A1 - Kaplan, Bernhard A1 - Laufer, Jan A1 - Prohaska, Steffen A1 - Buchmann, Jens T1 - Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography N2 - The goal of quantitative photoacoustic tomography (qPAT) is to recover maps of the chromophore distributions from multiwavelength images of the initial pressure. Model-based inversions that incorporate the physical processes underlying the photoacoustic (PA) signal generation represent a promising approach. Monte-Carlo models of the light transport are computationally expensive, but provide accurate fluence distributions predictions, especially in the ballistic and quasi-ballistic regimes. Here, we focus on the inverse problem of 3D qPAT of blood oxygenation and investigate the application of the Monte-Carlo method in a model-based inversion scheme. A forward model of the light transport based on the MCX simulator and acoustic propagation modeled by the k-Wave toolbox was used to generate a PA image data set acquired in a tissue phantom over a planar detection geometry. The combination of the optical and acoustic models is shown to account for limited-view artifacts. In addition, the errors in the fluence due to, for example, partial volume artifacts and absorbers immediately adjacent to the region of interest are investigated. To accomplish large-scale inversions in 3D, the number of degrees of freedom is reduced by applying image segmentation to the initial pressure distribution to extract a limited number of regions with homogeneous optical parameters. The absorber concentration in the tissue phantom was estimated using a coordinate descent parameter search based on the comparison between measured and modeled PA spectra. The estimated relative concentrations using this approach lie within 5 % compared to the known concentrations. Finally, we discuss the feasibility of this approach to recover the blood oxygenation from experimental data. T3 - ZIB-Report - 17-04 KW - quantitative photoacoustic tomography KW - model-based inversion KW - oxygen saturation KW - chromophore concentration KW - photoacoustic imaging KW - Monte Carlo methods for light transport KW - boundary conditions KW - coordinate search Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62318 SN - 1438-0064 ER - TY - THES A1 - Keidel, Stefan T1 - Snapshots in Scalaris N2 - Eines der größten Hindernisse beim praktischen Einsatz von Scalaris, einer skalierbaren Implementierung einer verteilten Hashtabelle mit Unterstützung für Transaktionen, ist das Fehlen eines Verfahrens zur Aufnahme eines konsistenten Zustandes des gesamten Systems. Wir stellen in dieser Arbeit ein einfaches Protokoll vor, dass diese Aufgabe erfüllt und sich, auf Grund der von uns gewählten Herangehensweise, leicht implementieren lässt. Als Ausgangspunkt dafür wählen wir aus einer Reihe von „klassischen“ Snapshot-Algorithmen ein 1993 von Mattern entworfenes Verfahren, welches auf dem Algorithmus von Lai und Yang basiert, aus. Diese Entscheidung basiert auf einer gründlichen Analyse der Protokolle unter Berücksichtigung der Architektur der existierenden Software. Im nächsten Arbeitsschritt benutzen wir unser vollständiges Wissen über die Interna des Transaktionssystems von Scalaris und vereinfachen damit das Verfahren hinsichtlich Benutzbarkeit und Implementierungskomplexität, ohne die Anforderungen an den aufgenommenen Zustand aufzuweichen. Statt einer losen Anhäufung lokaler Zustände der einzelnen Teilnehmerknoten können wir am Ende eine große Schlüssel-Wert-Tabelle als Ergebnis erzeugen, die konsistent ist, sich leicht weiterverarbeiten lässt und die einem Zustand entspricht, in dem sich das System einmal befunden haben könnte. Nachdem wir das Verfahren dann in Software umgesetzt haben, werten wir die Ergebnisse hinsichtlich des Einflusses auf die Performanz des Gesamtsystems aus und diskutieren mögliche Weiterentwicklungen. KW - scalaris KW - dht KW - algorithm Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42282 ER - TY - THES A1 - Hoffmann, Marie T1 - Approximate Algorithms for Distributed Systems N2 - Peer-to-peer (P2P) systems form a special class of distributed systems. Typically, nodes in a P2P system are flat and share the same responsabilities. In this thesis we focus on three problems that occur in P2P systems: the storage of data replicates, quantile computation on distributed data streams, and churn rate estimation. Data replication is one of the oldest techniques to maintain stored data in a P2P system and to reply to read requests. Applications, which use data replication are distributed databases. They are part of an abstract overlay network and do not see the underlying network topology. The question is how to place a set of data replicates in a distributed system such that response times and failure probabilities become minimal without a priori knowledge of the topology of the underlying hardware nodes? We show how to utilize an agglomerative clustering procedure to reach this goal. State-of-the-art algorithms for aggregation of distributed data or data streams require at some point synchronization, or merge data aggregates hierarchically, which does not accompany the basic principle of P2P systems. We test whether randomized communication and merging of data aggregates are able to produce the same results. These data aggregates serve for quantile queries. Constituting and maintaining a P2P overlay network requires frequent message passing. It is a goal to minimize the number of maintenance messages since they consume bandwidth which might be missing for other applications. The lower bound of the frequency for mainte- nance messages is highly dependent on the churn rate of peers. We show how to estimate the mean lifetime of peers and to reduce the frequency for maintenance messages without destabilizing the infrastructure of the constituting overlay. KW - peer-to-peer, machine learning, approximate, clustering, quantile, linear regression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42370 ER - TY - GEN A1 - Lie, Han Cheng A1 - Sullivan, T. J. A1 - Teckentrup, Aretha T1 - Random forward models and log-likelihoods in Bayesian inverse problems T2 - SIAM/ASA Journal on Uncertainty Quantification N2 - We consider the use of randomised forward models and log-likelihoods within the Bayesian approach to inverse problems. Such random approximations to the exact forward model or log-likelihood arise naturally when a computationally expensive model is approximated using a cheaper stochastic surrogate, as in Gaussian process emulation (kriging), or in the field of probabilistic numerical methods. We show that the Hellinger distance between the exact and approximate Bayesian posteriors is bounded by moments of the difference between the true and approximate log-likelihoods. Example applications of these stability results are given for randomised misfit models in large data applications and the probabilistic solution of ordinary differential equations. T3 - ZIB-Report - 18-03 KW - Bayesian inverse problem KW - random likelihood KW - surrogate model KW - posterior consistency KW - probabilistic numerics KW - uncertainty quantification KW - randomised misfit Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66324 SN - 1438-0064 VL - 6 IS - 4 SP - 1600 EP - 1629 ER - TY - GEN A1 - Ambellan, Felix A1 - Hanik, Martin A1 - von Tycowicz, Christoph T1 - Morphomatics: Geometric morphometrics in non-Euclidean shape spaces N2 - Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates. KW - shape analysis KW - geometric statistics KW - geometric morphometrics Y1 - 2021 U6 - https://doi.org/10.12752/8544 N1 - https://morphomatics.github.io/ ER - TY - GEN A1 - Shinano, Yuji T1 - UG - Ubiquity Generator Framework v0.9.1 N2 - UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization. UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. For MIP solving, ParaSCIP and FiberSCIP are well debugged and should be stable. For MINLP solving, they are relatively stable, but not as thoroughly debugged. This release version should handle branch-and-cut approaches where subproblems are defined by variable bounds and also by constrains for ug[SCIP,*] ParaSCIP and FiberSCIP). Therefore, problem classes other than MIP or MINLP can be handled, but they have not been tested yet. v0.9.1: Update orbitope cip files. KW - parallelization framework KW - branch-and-bound parallelization KW - integer optimization Y1 - 2020 U6 - https://doi.org/10.12752/8508 ER - TY - THES A1 - Krause, Jan T1 - Investigation of Options to Handle 3D MRI Data via Convolutional Neural Networks Application in Knee Osteoarthritits Classification KW - Machine Learning KW - Computational Diagnosis KW - Knee Osteoarthritis Y1 - 2021 ER - TY - THES A1 - Shestakov, Alexey T1 - A Deep Learning Method for Automated Detection of Meniscal Tears in Meniscal Sub-Regions in 3D MRI Data N2 - This work presents a fully automated pipeline, centered around a deep neural network, as well as a method to train that network in an efficient manner, that enables accurate detection of lesions in meniscal anatomical subregions. The network architecture is based on a transformer encoder/decoder. It is trained on DESS and tuned on IW TSE 3D MRI scans sourced from the Osteoarthritis Initiative. Furthermore, it is trained in a multilabel, and multitask fashion, using an auxiliary detection head. The former enables implicit localisation of meniscal defects, that to the best of my knowledge, has not yet been reported elsewhere. The latter enables efficient learning on the entire 3D MRI volume. Thus, the proposed method does not require any expert knowledge at inference. Aggregated inference results from two datasets resulted in an overall AUCROC result of 0.90, 0.91 and 0.93 for meniscal lesion detection anywhere in the knee, in medial and in lateral menisci respectively. These results compare very well to the related work, even though only a fraction of the data has been utilized. Clinical applicability and benefit is yet to be determined. KW - Machine Learning KW - Computational Diagnosis KW - Knee Osteoarthritis Y1 - 2021 ER - TY - GEN A1 - Ribera Borrell, Enric A1 - Quer, Jannes A1 - Richter, Lorenz A1 - Schütte, Christof T1 - Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics N2 - Sampling rare events in metastable dynamical systems is often a computationally expensive task and one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate the problem of finding optimal importance sampling controls as a stochastic optimization problem, this then brings additional numerical challenges and the convergence of corresponding algorithms might as well suffer from metastabilty. In this article we address this issue by combining systematic control approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more effective than previous attempts and that only the combination of the two approaches leads to a satisfying convergence and therefore to an efficient sampling in certain metastable settings. T3 - ZIB-Report - 21-40 KW - importance sampling KW - stochastic optimal control KW - rare event simulation KW - metastability KW - neural networks KW - metadynamics Y1 - 2021 SN - 1438-0064 ER - TY - THES A1 - Paskin, Martha T1 - Estimating 3D Shape of the Head Skeleton of Basking Sharks Using Annotated Landmarks on a 2D Image N2 - Basking sharks are thought to be one of the most efficient filter-feeding fish in terms of the throughput of water filtered through their gills. Details about the underlying morphology of their branchial region have not been studied due to various challenges in acquiring real-world data. The present thesis aims to facilitate this, by developing a mathematical shape model which constructs the 3D structure of the head skeleton of a basking shark using annotated landmarks on a single 2D image. This is an ill-posed problem as estimating the depth of a 3D object from a single 2D view is, in general, not possible. To reduce this ambiguity, we create a set of pre-defined training shapes in 3D from CT scans of basking sharks. First, the damaged structures of the sharks in the scans are corrected via solving a set of optimization problems, before using them as accurate 3D representations of the object. Then, two approaches are employed for the 2D-to-3D shape fitting problem–an Active Shape Model approach and a Kendall’s Shape Space approach. The former represents a shape as a point on a high-dimensional Euclidean space, whereas the latter represents a shape as an equivalence class of points in this Euclidean space. Kendall’s shape space approach is a novel technique that has not yet been applied in this context, and a comprehensive comparison of the two approaches suggests this approach to be superior for the problem at hand. This can be credited to an improved interpolation of the training shapes. N2 - Riesenhaie zählen zu den effizientesten Filtrierern hinsichtlich des durch die Kiemen gefilterten Wasservolumens. Die Kiemenregion dieser Tiere besitzt eine markante Morphologie, die jedoch bisher nicht umfassend erforscht werden konnte, da es schwierig ist, reale Daten dieser Tiere zu erheben. Die vorliegende Arbeit zielt darauf ab, dies durch die Entwicklung eines mathematischen Formmodels zu ermöglichen, das es erlaubt, die 3D-Struktur des Schädelskeletts anhand von Landmarken, die auf einem 2D-Bild platziert werden, zu rekonstruieren. Die hierzu benötigte Tiefenbestimmung der Landmarken aus einer 2D-Projektion ist ein unterbestimmtes Problem. Wir lösen dies durch die Hinzunahme von Trainingsformen, welche wir aus CT-Scans von Riesenhaien gewinnen. Der Zustand der tomografierten Exemplare erfordert jedoch einen vorhergehenden Korrekturschritt, den wir mit Hilfe eines Optimierungsansatzes lösen, bevor die extrahierten Strukturen als 3D-Trainingsformen dienen können. Um die 3D-Struktur des Schädelskelettes aus 2D-Landmarken zu rekonstruieren, vergleichen wir zwei Ansätze – den sogenannten Active-Shape-Model (ASM)-Ansatz und einen Ansatz basierend auf Kendalls Formenraum. Während eine Form des ASM-Ansatzes durch einen Punkt in einem hochdimensionalen Euklidischen Raum repräsentiert ist, repräsentiert eine Form im Kendall-Formenraum eine Äquivalenzklasse von Punkten des Euklidischen Raumes. Die Anwendung des Kendall-Formenraumes für das beschriebene Problem ist neu und ein umfassender Vergleich der Methoden hat ergeben, dass dieser Ansatz für die spezielle Anwendung zu besseren Ergebnissen führt. Wir führen dies auf die überlegene Interpolation der Trainingsformen in diesem Raum zurück. Y1 - 2022 UR - https://arxiv.org/abs/2207.12687 ER -